Advertisements
Advertisements
प्रश्न
If A = `{y : y = ("a"+1)/2, "a" ∈ "W" and "a" ≤ 5}`, B = `{y : y = (2"n" – 1)/2, "n" ∈ "W" and "n" < 5}` and C = `{-1, −1/2, 1, 3/2, 2}` then show that A – (B ∪ C) = (A – B) ∩ (A – C)
उत्तर
A = `{y : y = ("a"+1)/2, "a" ∈ "W" and "a" ≤ 5}`
a = {0, 1, 2, 3, 4, 5}
⇒ y = `("a" + 1)/2 = 1/2`
y = `(1 + 1)/2 = 2/2` = 1
y = `(2 + 1)/2 = 3/2`
y = `(3 + 1)/2 = 4/2` = 2
y = `(4 + 1)/2 = 5/2`
y = `(5 + 1)/2 = 6/2` = 3
∴ A = `{1/2, 1, 3/2, 2, 5/2, 3}`
B = `{y : y = (2"n" – 1)/2, "n" ∈ "W" and "n" < 5}`
n = {0, 1, 2, 3, 4}
⇒ y = `(2 xx 0 - 1)/2 = (-1)/2`
y = `(2 xx 1 - 1)/2 = 1/2`
y = `(2 xx 2 - 1)/2 = 3/2`
y = `(2 xx 3 - 1)/2 = 5/2`
y = `(2 xx 4 - 1)/2 = 7/2`
∴ B = `{-1/2, 1/2, 3/2, 5/2, 7/2}`
C = `{-1, -1/2, 1, 3/2, 2}`
B ∪ C = `{-1, -1/2, 1/2, 1, 3/2, 2, 5/2, 7/2}`
A − (B ∪ C) = {3} ...(1)
A − B = {1, 2, 3}
A − C = `{1/2, 5/2, 3}`
(A – B) ∩ (A – C) = {3} ...(2)
From (1) and (2), it is verified that
A – (B ∪ C) = (A – B) ∩ (A – C).
APPEARS IN
संबंधित प्रश्न
Using the adjacent Venn diagram, find the following set:
A’ ∪ B’
Using the adjacent Venn diagram, find the following set:
A’ ∩ B’
Using the adjacent Venn diagram, find the following set:
A – (B ∪ C)
Using the adjacent Venn diagram, find the following set:
A – (B ∩ C)
If K = {a, b, d, e, f}, L = {b, c, d, g} and M = {a, b, c, d, h} then find the following:
K ∩ (L ∪ M)
If K = {a, b, d, e, f}, L = {b, c, d, g} and M = {a, b, c, d, h} then find the following:
(K ∩ L) ∪ (K ∩ M) and verify distributive laws
Verify A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) using Venn diagrams
If A = {b, c, e, g, h}, B = {a, c, d, g, i}, and C = {a, d, e, g, h}, then show that A – (B ∩ C) = (A – B) ∪ (A – C)
If A = {– 2, 0, 1, 3, 5}, B = {–1, 0, 2, 5, 6} and C = {–1, 2, 5, 6, 7}, then show that A – (B ∪ C) = (A – B) ∩ (A – C)
Verify (A ∩ B)’ = A’ ∪ B’ using Venn diagrams