Advertisements
Advertisements
प्रश्न
If a + b = 10 and ab = 18, find the value of a2 + b2
उत्तर
We have (a + b)2 = a2 + 2ab + b2
(a + b)2 = a2 + b2 + 2ab
given a + b = 0 and ab = 18
102 = a2 + b2 + 2(18)
100 = a2 + b2 + 36
100 – 36 = a2 + b2
a2 + b2 = 64
APPEARS IN
संबंधित प्रश्न
Find the following squares by suing the identities.
(6x2 − 5y)2
Using identities, evaluate 992
Using identities, evaluate 1022
Using (x + a) (x + b) = x2 + (a + b) x + ab, find 103 × 104
Use the formula to multiply the following.
`("x"/5+6)("x"/5-6)`
Expand: (2x + 3y)2
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
9x2 + 30x + 25
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
2x3 + 24x2 + 72x
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
a2x3 + 2abx2 + b2x
Verify the following:
(5x + 8)2 – 160x = (5x – 8)2