Advertisements
Advertisements
प्रश्न
Show that (m – n)2 + (m + n)2 = 2(m2 + n2)
उत्तर
Taking the L.H.S = (m – n)2 + (m + n)2
= m2 – 2mn + n2 + m2 + 2mn + n2
= m2 + n2 + m2 + n2
= 2m2 + 2n2 ...`[∵ {:(("a" + "b")^2 - 4"ab" = "a"^2 + 2"ab" + "b"^2),(("a" - "b")^2 = "a"^2 - 2"ab" + "b"^2)]`
= 2(m2 + n2)
= R.H.S
∴ (m – n)2 + (m + n)2 = 2(m2 + n2)
APPEARS IN
संबंधित प्रश्न
Expand (5p – 1)2
Factorise the following using suitable identity
x2 – 8x + 16
The factors of x2 – 6x + 9 are
Simplify: (a + b)2 – (a – b)2
(a – b)2 = a2 – b2
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
p2 – 2p + 1
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
p2y2 – 2py + 1
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
4y2 – 12y + 9
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
`9y^2 - 4xy + (4x^2)/9`
If x – y = 13 and xy = 28, then find x2 + y2.