Advertisements
Advertisements
प्रश्न
If a, b, c and d are in proportion, prove that: `(a^2 + b^2)/(c^2 + d^2) = "ab + ad - bc"/"bc + cd - ad"`
उत्तर
∵ a, b, c, d are in proportion
`a/b = c/d` = k(say)
a = bk, c = dk.
L.H.S. = `(a^2 + b^2)/(c^2 + d^2)`
= `(b^2k^2 + b^2)/(d^2k^2 + d^2)`
= `(b^2(k^2 + 1))/(d^2(k^2 + 1)`
= `b^2/d^2`
R.H.S. = `"ab + ad - bc"/"bc + cd - ad"`
= `"bk.b + bk.d - b.dk"/"b.kd + dk.d - bk.d"`
= `(k(b^2 + bd - bd))/(k(bd + d^2 - bd)`
= `b^2/d^2`
∴ L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
If x2, 4 and 9 are in continued proportion, find x.
Using properties of proportion, solve for x:
`(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = 5`
Find two nurnbers whose mean proportional is 12 and the third proportional is 324.
If a, b, c and dare in continued proportion, then prove that
(a+ d)(b+ c)-(a+ c)(b+ d)= (b-c)2
If `x/a = y/b = z/c`, show that `x^3/a^3 - y^3/b^3 = z^3/c^3 = (xyz)/(zbc).`
Verify the following:
91 : 104 : : 119 : 136
Write (T) for true and (F) for false in case of the following:
32 kg : Rs 36 : : 8 kg : Rs 9
Find the value of x if 5 : 3 : : x : 6.
Choose the correct statement:
If a, b, c are in continued proportion, prove that: `(a + b)/(b + c) = (a^2(b - c))/(b^2(a - b)`.