मराठी

If a, b, c and d are in proportion, prove that: abcd[(1a2+1b2+1c2+1d2] = a2 + b2 + c2 + d2 - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c and d are in proportion, prove that: `abcd [(1/a^2 + 1/b^2 + 1/c^2 + 1/d^2]` = a2 + b2 + c2 + d

बेरीज

उत्तर

∵ a, b, c, d are in proportion
`a/b = c/d` = k(say)
a = bk, c = dk.
L.H.S. = `abcd (1/a^2 + 1/b^2 + 1/c^2 + 1/d^2)`

= `bk.b.dk.d [1/(b^2k^2) + 1/b^2 + 1/(d^2k^2) + 1/d^2]`

= `k^2b^2d^2 [(d^2 + d^2k^2 + b^2 + b^2k^2)/(b^2d^2k^2)]`

= d2(1 + k2) + b2(1 + k2)
= (1 + k2)(b2 + d2)
R.H.S. = a2 + b2 + c2 + d2
= b2k2 + b2 + d2k2 + d2
= b2(k2 + 1) + d2(k2 + 1)
= (k2 + 1)(b2 + d2)
∴ L.H.S. = R.H.S.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Ratio and Proportion - Exercise 7.2

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×