Advertisements
Advertisements
प्रश्न
If a, b, c are in continued proportion, prove that: a2 b2 c2 (a-4 + b-4 + c-4) = b-2(a4 + b4 + c4)
उत्तर
Given: a, b, c are in continued proportion.
`a/b = b/c` = k
`a/b` = k ∴ a = bk
`b/c` = k ∴ b = ck
L.H.S. = a2 b2 c2 (a-4 + b-4 + c-4)
L.H.S. = `a^2b^2c^2[1/a^4 + 1/b^4 + 1/c^4]`
L.H.S. = `(a^2b^2c^2)/a^4 + (a^2b^2c^2)/b^4 + (a^2b^2c^2)/c^4`
L.H.S. = `(b^2c^2)/a^2 + (c^2a^2)/b^2 + (a^2b^2)/c^2`
L.H.S. = `((ck)^2.c^2)/((ck^2)^2) + (c^2(ck^2)^2)/(ck)^2 + ((ck^2)^2(ck)^2)/(c^2)`
L.H.S. = `(c^2k^2.c^2)/(c^2k^4) + (c^2.c^2k^4)/(c^2k^2) + (c^2k^4.c^2k^2)/(c^2)`
L.H.S. = `c^2/k^2 + (c^2k^2)/(1) + (c^2k^6)/(1)`
L.H.S. = `c^2[1/k^2 + k^2 + k^6]`
L.H.S. = `c^2/k^2[ 1 + k^4 + k^8]`
R.H.S. = b- 2 [a4 + b4 + c4]
R.H.S. = `(1)/b^2[a^4 + b^4 + c^4]`
R.H.S. = `(1)/(ck)^2[(ck^2)^4 + (ck)^4 + c^4]`
R.H.S. = `(1)/(c^2k^2)[c^4k^8 + c^4k^4 + c^4]`
R.H.S. = `c^4/(c^2k^2)[k^8 + k^4 + 1]`
R.H.S. = `c^2/k^2[1 + k^4 + k^8]`
∴ L.H.S. = R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Using properties of proportion, solve for x:
`(sqrt(x + 1) + sqrt(x - 1))/(sqrt(x + 1) - sqrt(x - 1)) = (4x - 1)/2`
If `x/a = y/b = z/c`, prove that `x^3/a^2 + y^2/b^2 + z^3/c^2 = ((x + y + z)^3)/((a + b ++ c)^2)`.
Write (T) for true and (F) for false in case of the following:
32 kg : Rs 36 : : 8 kg : Rs 9
If 48 boxes contain 6000 pens, how many such boxes will be needed for 1875 pens?
If 57 : x : : 51 : 85, then the value of x is
If `x/a = y/b = z/c`, prove that `"ax - by"/((a + b)(x- y)) + "by - cz"/((b + c)(y - z)) + "cz - ax"/((c + a)(z - x)` = 3
If a, b, c are in continued proportion, prove that: `(a + b)/(b + c) = (a^2(b - c))/(b^2(a - b)`.
If 7 : 5 is in proportion to x : 25, then ‘x’ is
A student said that the ratios `3/4` and `9/16` were proportional. What error did the student make?
The mean proportional between 4 and 9 is ______.