Advertisements
Advertisements
Question
If a, b, c are in continued proportion, prove that: a2 b2 c2 (a-4 + b-4 + c-4) = b-2(a4 + b4 + c4)
Solution
Given: a, b, c are in continued proportion.
`a/b = b/c` = k
`a/b` = k ∴ a = bk
`b/c` = k ∴ b = ck
L.H.S. = a2 b2 c2 (a-4 + b-4 + c-4)
L.H.S. = `a^2b^2c^2[1/a^4 + 1/b^4 + 1/c^4]`
L.H.S. = `(a^2b^2c^2)/a^4 + (a^2b^2c^2)/b^4 + (a^2b^2c^2)/c^4`
L.H.S. = `(b^2c^2)/a^2 + (c^2a^2)/b^2 + (a^2b^2)/c^2`
L.H.S. = `((ck)^2.c^2)/((ck^2)^2) + (c^2(ck^2)^2)/(ck)^2 + ((ck^2)^2(ck)^2)/(c^2)`
L.H.S. = `(c^2k^2.c^2)/(c^2k^4) + (c^2.c^2k^4)/(c^2k^2) + (c^2k^4.c^2k^2)/(c^2)`
L.H.S. = `c^2/k^2 + (c^2k^2)/(1) + (c^2k^6)/(1)`
L.H.S. = `c^2[1/k^2 + k^2 + k^6]`
L.H.S. = `c^2/k^2[ 1 + k^4 + k^8]`
R.H.S. = b- 2 [a4 + b4 + c4]
R.H.S. = `(1)/b^2[a^4 + b^4 + c^4]`
R.H.S. = `(1)/(ck)^2[(ck^2)^4 + (ck)^4 + c^4]`
R.H.S. = `(1)/(c^2k^2)[c^4k^8 + c^4k^4 + c^4]`
R.H.S. = `c^4/(c^2k^2)[k^8 + k^4 + 1]`
R.H.S. = `c^2/k^2[1 + k^4 + k^8]`
∴ L.H.S. = R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find the fourth proportional to 1.5, 4.5 and 3.5
Find the fourth proportion to the following :
(x2 - y2),(x3 + y3)anc(x3 - xy2 + x2y- y3)
Find the third proportional to:
`a/b + b/c, sqrt(a^2 + b^2)`.
In proportion, the 1st, 2nd, and 4th terms are 51, 68, and 108 respectively. Find the 3rd term.
24 workers can build a wall in 15 days. How many days will 9 workers take to build a similar wall?
If a, b, c are in proportion, then
If `x/a = y/b = z/c`, prove that `"ax - by"/((a + b)(x- y)) + "by - cz"/((b + c)(y - z)) + "cz - ax"/((c + a)(z - x)` = 3
If a, b, c are in continued proportion, prove that: `(pa^2+ qab+ rb^2)/(pb^2+qbc+rc^2) = a/c`
Find the missing number in the box in the proportions:
`3/8 = square/20`
Determine if the following are in proportion.
4, 6, 8, 12