मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता ९ वी

If a, b, c are in continued proportion, then prove that aa+2b=a-2ba-4c - Algebra

Advertisements
Advertisements

प्रश्न

If a, b, c are in continued proportion, then prove that 

`a/[ a + 2b] = [a - 2b]/[ a - 4c]`

बेरीज

उत्तर

a, b, c are in continued proportion.

`therefore a/b = b/c = k`

⇒ `a = bk, b = ck`

⇒ `a = bk = ck xx k = ck^2`

LHS = `a/[ a + 2b] =  [ck^2]/[ ck^2 + 2 xx ck ]`

= `[ck^2]/[ ck( k + 2) ]`

= `k/( k + 2)`   ...(1)

RHS = `[ a - 2b]/[ a - 4c ] = [ ck^2 - 2 xx ck]/[ ck^2 - 4c ]`

= `[ck( k -2)]/[c(k^2 - 4)]`

= `[k( k -2)]/[(k+2)(k-2)]`

= `k/(k + 2)`   ...(2)

From (1) and (2), we get

`a/[ a + 2b] = [a - 2b]/[ a - 4c]`

shaalaa.com
k Method for Equal Ratios
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Ratio and Proportion - Problem Set 4 [पृष्ठ ७९]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 9 Standard Maharashtra State Board
पाठ 4 Ratio and Proportion
Problem Set 4 | Q (10) (i) | पृष्ठ ७९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×