Advertisements
Advertisements
प्रश्न
If a, b, c, d are in proportion, then prove that
`[a^2 + ab + b^2]/[a^2 - ab + b^2] = [c^2 + cd + d^2 ]/[ c^2 - cd + d^2 ]`
उत्तर
It is given that a, b, c, d are in proportion.
`therefore a/b = c/d = k`
⇒ a = bk , c = dk
LHS = `[a^2 + ab + b^2]/[a^2 - ab + b^2]`
= `[(bk)^2 + bk xx b + b^2]/[(bk)^2 - bk xx b + b^2]`
= `[b^2(k^2 + k + 1)]/[b^2(k^2 + k + 1 )]`
= `[ k^2+k+1 ]/[ k^2 - k +1 ]` ....(1)
RHS = `[c^2 + cd + d^2 ]/[ c^2 - cd + d^2 ]`
= `[(dk)^2 + dk xx d + d^2]/[(dk)^2 - dk xx d + d^2 ]`
= `[d^2(k^2 + k + 1)]/[d^2(k^2 - k + 1 )]`
= `[k^2+k+1]/[k^2 - k +1]` ...(2)
LHS = RHS
From (1) and (2), we get
`[a^2 + ab + b^2]/[a^2 - ab + b^2] = [c^2 + cd + d^2 ]/[ c^2 - cd + d^2 ]`
APPEARS IN
संबंधित प्रश्न
Three numbers are in continued proportion, whose mean proportional is 12 and the sum of the remaining two numbers is 26, then find these numbers.
If (a + b + c) (a - b + c) = a2 + b2 + c2 show that a, b, c are in continued proportion.
If `a/b = b/c` and `a , b , c > 0` then show that, (a + b + c) (b - c) = ab - c2
If `a/b = b/c` and a, b, c > 0 then show that, `[a^2 + b^2]/(ab) = (a+c)/b`
If a, b, c are in continued proportion, then prove that
`a/[ a + 2b] = [a - 2b]/[ a - 4c]`
If a, b, c are in continued proportion, then prove that
`b/[b+c] = [a-b]/[a-c]`
If a, b, c, d are in proportion, then prove that
`[11a^2 + 9ac]/[ 11b^2 + 9bd] = [ a^2 + 3ac]/[ b^2 + 3bd]`
If a, b, c, d are in proportion, then prove that
`sqrt[( a^2 + 5c^2)/( b^2 + 5d^2)] = a/b`