मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता ९ वी

If a, b, c, d are in proportion, then prove that a2+ab+b2a2-ab+b2=c2+cd+d2c2-cd+d2 - Algebra

Advertisements
Advertisements

प्रश्न

If a, b, c, d  are in proportion, then prove that 

`[a^2 + ab + b^2]/[a^2 - ab + b^2] = [c^2 + cd + d^2 ]/[ c^2 - cd + d^2 ]`

बेरीज

उत्तर

It is given that a, b, c, d are in proportion.

`therefore a/b = c/d = k`

⇒ a = bk , c = dk

LHS = `[a^2 + ab + b^2]/[a^2 - ab + b^2]`

= `[(bk)^2 + bk xx b + b^2]/[(bk)^2 - bk xx b + b^2]`

= `[b^2(k^2 + k + 1)]/[b^2(k^2 + k + 1 )]`

= `[ k^2+k+1 ]/[ k^2 - k +1 ]`     ....(1)

RHS = `[c^2 + cd + d^2 ]/[ c^2 - cd + d^2 ]`

= `[(dk)^2 + dk xx d + d^2]/[(dk)^2 - dk xx d + d^2 ]`

= `[d^2(k^2 + k + 1)]/[d^2(k^2 - k + 1 )]`

= `[k^2+k+1]/[k^2 - k +1]`     ...(2)

LHS = RHS

From (1) and (2), we get

`[a^2 + ab + b^2]/[a^2 - ab + b^2] = [c^2 + cd + d^2 ]/[ c^2 - cd + d^2 ]`

shaalaa.com
k Method for Equal Ratios
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Ratio and Proportion - Problem Set 4 [पृष्ठ ७८]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 9 Standard Maharashtra State Board
पाठ 4 Ratio and Proportion
Problem Set 4 | Q (9) (iii) | पृष्ठ ७८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×