मराठी

If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______. -

Advertisements
Advertisements

प्रश्न

If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.

पर्याय

  • 4 sin A sin B sin C

  • 4 cos A cos B sin C

  • 4 cos A cos B cos C

  • None of these

MCQ
रिकाम्या जागा भरा

उत्तर

If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to 4 cos A cos B sin C.

Explanation:

We have, sin 2A + sin 2B – sin 2C

= (sin 2A + sin 2B) – sin 2C

= `2 sin((2A + 2B)/2) cos((2A - 2B)/2) - sin 2C`

= 2 sin (A + B) cos ( A – B) – sin 2C

= 2 sin C cos (A – B) – 2 sin C cos C

= 2 sin C [cos (A – B) – cos C]

= 2 sin C [cos (A – B) + cos (A + B)]

= 2 sin C (2 cos A cos B)

= 4 cos A cos B sin C

shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×