Advertisements
Advertisements
Question
If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.
Options
4 sin A sin B sin C
4 cos A cos B sin C
4 cos A cos B cos C
None of these
MCQ
Fill in the Blanks
Solution
If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to 4 cos A cos B sin C.
Explanation:
We have, sin 2A + sin 2B – sin 2C
= (sin 2A + sin 2B) – sin 2C
= `2 sin((2A + 2B)/2) cos((2A - 2B)/2) - sin 2C`
= 2 sin (A + B) cos ( A – B) – sin 2C
= 2 sin C cos (A – B) – 2 sin C cos C
= 2 sin C [cos (A – B) – cos C]
= 2 sin C [cos (A – B) + cos (A + B)]
= 2 sin C (2 cos A cos B)
= 4 cos A cos B sin C
shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
Is there an error in this question or solution?