मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If a Random Variable X Follows Poisson Distribution Such that P(X=L)=P(X=2), - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

 If a random variable X follows Poisson distribution such that P(X = l) =P(X = 2), then find P(X ≥ 1).  [Use e-2 = 0.1353] 

बेरीज

उत्तर

Given X - p(m)

The p.m.f of X is, 

P(X = x) = P(x) = `("e"^(-"m") . "m"^2)/("x"!)` , x = 0 , 1 , 2

Given P(X= l)= P(X= 2) 

`therefore ("e"^(-"m") . "m"^1)/(1!) = ("e"^(-"m") . "m"^2)/(2!)`

⇒  m = 2 

Now P (X ≥ 1) = 1 - P(X = 0)

`= 1 - ("e"^(-"m") . "m"^0)/(0!) = 1 - ("e"^(-2) xx 1)/1`

= 1 - e-2 

= 1- 0.1353

= 0.8647

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (July) Set 1

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The number of complaints which a bank manager receives per day is a Poisson random variable with parameter m = 4. Find the probability that the manager will receive -

(a) only two complaints on any given day.

(b) at most two complaints on any given day

[Use e-4 =0.0183]


 If X has Poisson distribution with parameter m = 1, find P[X ≤ 1]  [Use `e^-1 = 0.367879`]


If X has a Poisson distribution with variance 2, find P (X = 4) 

[Use e-2 = 0.1353] 


If X has a Poisson distribution with variance 2, find P(X ≤ 4) 

[Use e-2 = 0.1353] 


If X has a Poisson distribution with variance 2, find 

Mean of X [Use e-2 = 0.1353] 


If X has Poisson distribution with m = 1, then find P(X ≤ 1) given e−1 = 0.3678


If X~P(0.5), then find P(X = 3) given e−0.5 = 0.6065.


If X has Poisson distribution with parameter m and P(X = 2) = P(X = 3), then find P(X ≥ 2). Use e−3 = 0.0497


The number of complaints which a bank manager receives per day follows a Poisson distribution with parameter m = 4. Find the probability that the manager receives only two complaints on a given day


A car firm has 2 cars, which are hired out day by day. The number of cars hired on a day follows Poisson distribution with mean 1.5. Find the probability that (i) no car is used on a given day, (ii) some demand is refused on a given day, given e−1.5 = 0.2231.


It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has more than 5 rats inclusive. Given e-5  = 0.0067.


It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has between 5 and 7 rats inclusive. Given e−5 = 0.0067.


If E(X) = m and Var (X) = m then X follows ______.


Solve the following problem :

If X follows Poisson distribution such that P(X = 1) = 0.4 and P(X = 2) = 0.2, find variance of X.


Solve the following problem :

If X follows Poisson distribution with parameter m such that
`("P"("X" = x + 1))/("P"("X" = x)) = (2)/(x + 1)`
Find mean and variance of X.


Choose the correct alternative:

For the Poisson distribution ______


Choose the correct alternative:

A distance random variable X is said to have the Poisson distribution with parameter m if its p.m.f. is given by P(x) = `("e"^(-"m")"m"^"x")/("x"!)` the condition for m is ______


State whether the following statement is True or False:

X is the number obtained on upper most face when a die is thrown, then E(x) = 3.5


State whether the following statement is True or False:

If n is very large and p is very small then X follows Poisson distribution with n = mp


The probability that a bomb will hit the target is 0.8. Using the following activity, find the probability that, out of 5 bombs, exactly 2 will miss the target

Solution: Let p = probability that bomb miss the target

∴ q = `square`, p = `square`, n = 5.

X ~ B`(5, square)`, P(x) = `""^"n""C"_x"P"^x"q"^("n" - x)`

P(X = 2) =  `""^5"C"_2  square = square`


If X follows Poisson distribution such that P(X = 1) = 0.4 and P(X = 2) = 0.2, using the following activity find the value of m.

Solution: X : Follows Poisson distribution

∴ P(X) = `("e"^-"m" "m"^x)/(x!)`, P(X = 1) = 0.4 and P(X = 2) = 0.2

∴ P(X = 1) = `square` P(X = 2).

`("e"^-"m" "m"^x)/(1!) = square ("e"^-"m" "m"^2)/(2!)`,

`"e"^-"m" = square  "e"^-"m" "m"/2`, m ≠ 0

∴ m = `square`


State whether the following statement is true or false:

lf X ∼ P(m) with P(X = 1) = P(X = 2) then m = 1.


If X has Poisson distribution with parameter m and P(X = 2) = P(X = 3), then find P(X ≥ 2). Use e–3 = 0.0497.

P[X = x] = `square`

Since P[X = 2] = P[X = 3]

`square` = `square`

`m^2/2 = m^3/6` 

∴ m = `square`

Now, P[X ≥ 2] = 1 – P[x < 2]

= 1 – {P[X = 0] + P[X = 1]

= `1 - {square/(0!) + square/(1!)}`

= 1 – e–3[1 + 3]

= 1 – `square` = `square`


If X – P(m) with P(X = 1) = P(X = 2), then find the mean and P(X = 2) given that e–2 = 0.1353

Solution: Since P(X = 1) = P(X = 2)

`(e^-mm^1)/(1!) = square`

∴ m = `square`

∴ mean = `square` = `square`

Then P(X = 2) = `square` = `square`


If X ∼ P(m) with P(X = 1) = P(X = 2), then find the mean and P(X = 2).

Given e–2 = 0.1353

Solution: Since P(X = 1) = P(X = 2)

∴ `("e"^square"m"^1)/(1!) = ("e"^"-m""m"^2)/square`

∴ m = `square`

∴ P(X = 2) = `("e"^-2. "m"^2)/(2!)` = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×