मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following problem : If X follows Poisson distribution such that P(X = 1) = 0.4 and P(X = 2) = 0.2, find variance of X. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

If X follows Poisson distribution such that P(X = 1) = 0.4 and P(X = 2) = 0.2, find variance of X.

बेरीज

उत्तर

Given, P[X = 1] = 0.4, P[X = 2] = 0.2,

e–1 = 0.3678

For Poisson distribution,

X ~ P(m)

The p.m.f. of X is given by

P[X = x] = e-mmxx!

Now,
P[X = 1] = e-mm11! = me-m

∴ 0.4 = me-m               ...(i)

P[X = 2] = e-mm22! = m2e-m2

∴ 0.2 = m2e-m2

∴ 0.4 = m2 e–m          ...(ii)

0.40.4=m2e-mme-m     ...[From (i) and (ii)]

∴ m = 1

∴ X ~ P(1)

∴ Var (X) = m = 1.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Probability Distributions - Part II [पृष्ठ १५७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Probability Distributions
Part II | Q 1.13 | पृष्ठ १५७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The number of complaints which a bank manager receives per day is a Poisson random variable with parameter m = 4. Find the probability that the manager will receive -

(a) only two complaints on any given day.

(b) at most two complaints on any given day

[Use e-4 =0.0183]


 If a random variable X follows Poisson distribution such that P(X = l) =P(X = 2), then find P(X ≥ 1).  [Use e-2 = 0.1353] 


 If X has Poisson distribution with parameter m = 1, find P[X ≤ 1]  [Use e-1=0.367879]


If X has a Poisson distribution with variance 2, find P (X = 4) 

[Use e-2 = 0.1353] 


If X has a Poisson distribution with variance 2, find P(X ≤ 4) 

[Use e-2 = 0.1353] 


If X has a Poisson distribution with variance 2, find 

Mean of X [Use e-2 = 0.1353] 


If X~P(0.5), then find P(X = 3) given e−0.5 = 0.6065.


If X has Poisson distribution with parameter m and P(X = 2) = P(X = 3), then find P(X ≥ 2). Use e−3 = 0.0497


The number of complaints which a bank manager receives per day follows a Poisson distribution with parameter m = 4. Find the probability that the manager receives only two complaints on a given day


The number of complaints which a bank manager receives per day follows a Poisson distribution with parameter m = 4. Find the probability that the manager receives a) only two complaints on a given day, b) at most two complaints on a given day. Use e−4 = 0.0183.


It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has exactly 5 rats inclusive. Given e-5  = 0.0067.


It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has more than 5 rats inclusive. Given e-5  = 0.0067.


It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has between 5 and 7 rats inclusive. Given e−5 = 0.0067.


Solve the following problem :

If X follows Poisson distribution with parameter m such that
P(X=x+1)P(X=x)=2x+1
Find mean and variance of X.


X : is number obtained on upper most face when a fair die is thrown then E(X) = ______


The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.


Choose the correct alternative:

For the Poisson distribution ______


Choose the correct alternative:

A distance random variable X is said to have the Poisson distribution with parameter m if its p.m.f. is given by P(x) = e-mmxx! the condition for m is ______


State whether the following statement is True or False:

X is the number obtained on upper most face when a die is thrown, then E(x) = 3.5


State whether the following statement is True or False:  

A discrete random variable X is said to follow the Poisson distribution with parameter m ≥ 0 if its p.m.f. is given by P(X = x) = e-mmxx, x = 0, 1, 2, .....


The probability that a bomb will hit the target is 0.8. Using the following activity, find the probability that, out of 5 bombs, exactly 2 will miss the target

Solution: Let p = probability that bomb miss the target

∴ q = , p = , n = 5.

X ~ B(5,), P(x) = nCxPxqn-x

P(X = 2) =  5C2 =


If X follows Poisson distribution such that P(X = 1) = 0.4 and P(X = 2) = 0.2, using the following activity find the value of m.

Solution: X : Follows Poisson distribution

∴ P(X) = e-mmxx!, P(X = 1) = 0.4 and P(X = 2) = 0.2

∴ P(X = 1) = P(X = 2).

e-mmx1!=e-mm22!,

e-m= e-mm2, m ≠ 0

∴ m =


State whether the following statement is true or false:

lf X ∼ P(m) with P(X = 1) = P(X = 2) then m = 1.


If X has Poisson distribution with parameter m and P(X = 2) = P(X = 3), then find P(X ≥ 2). Use e–3 = 0.0497.

P[X = x] =

Since P[X = 2] = P[X = 3]

=

m22=m36 

∴ m =

Now, P[X ≥ 2] = 1 – P[x < 2]

= 1 – {P[X = 0] + P[X = 1]

= 1-{0!+1!}

= 1 – e–3[1 + 3]

= 1 – =


In a town, 10 accidents take place in the span of 50 days. Assuming that the number of accidents follows Poisson distribution, find the probability that there will be 3 or more accidents on a day.

(Given that e-0.2 = 0.8187)


If X ∼ P(m) with P(X = 1) = P(X = 2), then find the mean and P(X = 2).

Given e–2 = 0.1353

Solution: Since P(X = 1) = P(X = 2)

em11!=e-mm2

∴ m =

∴ P(X = 2) = e-2.m22! =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.