Advertisements
Advertisements
प्रश्न
Solve the following problem :
If X follows Poisson distribution such that P(X = 1) = 0.4 and P(X = 2) = 0.2, find variance of X.
उत्तर
Given, P[X = 1] = 0.4, P[X = 2] = 0.2,
e–1 = 0.3678
For Poisson distribution,
X ~ P(m)
The p.m.f. of X is given by
P[X = x] =
Now,
P[X = 1] =
∴ 0.4 = me-m ...(i)
P[X = 2] =
∴ 0.2 =
∴ 0.4 = m2 e–m ...(ii)
∴
∴ m = 1
∴ X ~ P(1)
∴ Var (X) = m = 1.
संबंधित प्रश्न
The number of complaints which a bank manager receives per day is a Poisson random variable with parameter m = 4. Find the probability that the manager will receive -
(a) only two complaints on any given day.
(b) at most two complaints on any given day
[Use e-4 =0.0183]
If a random variable X follows Poisson distribution such that P(X = l) =P(X = 2), then find P(X ≥ 1). [Use e-2 = 0.1353]
If X has Poisson distribution with parameter m = 1, find P[X ≤ 1] [Use
If X has a Poisson distribution with variance 2, find P (X = 4)
[Use e-2 = 0.1353]
If X has a Poisson distribution with variance 2, find P(X ≤ 4)
[Use e-2 = 0.1353]
If X has a Poisson distribution with variance 2, find
Mean of X [Use e-2 = 0.1353]
If X~P(0.5), then find P(X = 3) given e−0.5 = 0.6065.
If X has Poisson distribution with parameter m and P(X = 2) = P(X = 3), then find P(X ≥ 2). Use e−3 = 0.0497
The number of complaints which a bank manager receives per day follows a Poisson distribution with parameter m = 4. Find the probability that the manager receives only two complaints on a given day
The number of complaints which a bank manager receives per day follows a Poisson distribution with parameter m = 4. Find the probability that the manager receives a) only two complaints on a given day, b) at most two complaints on a given day. Use e−4 = 0.0183.
It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has exactly 5 rats inclusive. Given e-5 = 0.0067.
It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has more than 5 rats inclusive. Given e-5 = 0.0067.
It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has between 5 and 7 rats inclusive. Given e−5 = 0.0067.
Solve the following problem :
If X follows Poisson distribution with parameter m such that
Find mean and variance of X.
X : is number obtained on upper most face when a fair die is thrown then E(X) = ______
The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.
Choose the correct alternative:
For the Poisson distribution ______
Choose the correct alternative:
A distance random variable X is said to have the Poisson distribution with parameter m if its p.m.f. is given by P(x) =
State whether the following statement is True or False:
X is the number obtained on upper most face when a die is thrown, then E(x) = 3.5
State whether the following statement is True or False:
A discrete random variable X is said to follow the Poisson distribution with parameter m ≥ 0 if its p.m.f. is given by P(X = x) =
The probability that a bomb will hit the target is 0.8. Using the following activity, find the probability that, out of 5 bombs, exactly 2 will miss the target
Solution: Let p = probability that bomb miss the target
∴ q =
X ~ B
P(X = 2) =
If X follows Poisson distribution such that P(X = 1) = 0.4 and P(X = 2) = 0.2, using the following activity find the value of m.
Solution: X : Follows Poisson distribution
∴ P(X) =
∴ P(X = 1) =
∴ m =
State whether the following statement is true or false:
lf X ∼ P(m) with P(X = 1) = P(X = 2) then m = 1.
If X has Poisson distribution with parameter m and P(X = 2) = P(X = 3), then find P(X ≥ 2). Use e–3 = 0.0497.
P[X = x] =
Since P[X = 2] = P[X = 3]
∴ m =
Now, P[X ≥ 2] = 1 – P[x < 2]
= 1 – {P[X = 0] + P[X = 1]
=
= 1 – e–3[1 + 3]
= 1 –
In a town, 10 accidents take place in the span of 50 days. Assuming that the number of accidents follows Poisson distribution, find the probability that there will be 3 or more accidents on a day.
(Given that e-0.2 = 0.8187)
If X ∼ P(m) with P(X = 1) = P(X = 2), then find the mean and P(X = 2).
Given e–2 = 0.1353
Solution: Since P(X = 1) = P(X = 2)
∴
∴ m =
∴ P(X = 2) =