рдорд░рд╛рдареА

If ЁЭЫ╝, ЁЭЫ╜ Are the Zeroes of the Polynomial `F(X) = X^2 тАУ 5x + K` Such that ЁЭЫ╝ - ЁЭЫ╜ = 1, Find the Value of K = ? - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If ЁЭЫ╝, ЁЭЫ╜ are the zeroes of the polynomial `f(x) = x^2 – 5x + k` such that ЁЭЫ╝ - ЁЭЫ╜ = 1, find the value  of k = ? 

рдЙрддреНрддрд░

By using the relationship between the zeroes of the quadratic polynomial.
We have  

Sum of zeroes=`(-("Coefficent of x"))/("Cofficient of x"^2)` and Product of zeroes =`("Constant term")/("Coefficent of "x^2)`   

`∴ ∝+β=-(-5)/1` and ∝β=k/1` 

Solving ЁЭЫ╝ - ЁЭЫ╜ = 1 and ЁЭЫ╝ + ЁЭЫ╜ = 5, we will get 

∝=3 and  ЁЭЫ╜=2 

Substituting these values in ЁЭЫ╝ЁЭЫ╜ =`k/1` we will get 

`k = 6`

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 2: Polynomials - Exercises 3

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [5]

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×