मराठी

If the areas of the adjacent faces of a rectangular block are in the ratio 2 : 3 : 4 and its volume is 9000 cm3, then the length of the shortest edge is - Mathematics

Advertisements
Advertisements

प्रश्न

If the areas of the adjacent faces of a rectangular block are in the ratio 2 : 3 : 4 and its volume is 9000 cm3, then the length of the shortest edge is

पर्याय

  •  30 cm

  • 20 cm

  •  15 cm

  •  10 cm

MCQ

उत्तर

Let, the edges of the cuboid be a cm, b cm and c cm.

And, a < b < c

The areas of the three adjacent faces are in the ratio 2 : 3 : 4.

So,

ab : ca : bc = 2 : 3 : 4, and its volume is 9000 cm3

We have to find the shortest edge of the cuboid

Since;

`(ab)/(bc) = 2/4`

`a/c = 1/2`

   c = 2a

Similarly,

`(ca)/(bc) = 3/4`

`a/b = 3/4`

`b = (4a)/3`

`b = (4a)/3`

Volume of the cuboid,

   V = abc 

`9000 = a((4a)/3)(2a)`

27000 = 8a3

      a=` (27 xx1000)/8`

     `a = (3xx10)/2`

       a = 15 cm 

As` b = (4a)/3 `and c = 2a 

Thus, length of the shortest edge is 15 cm .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Surface Areas and Volume of a Cuboid and Cube - Exercise 18.3 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 18 Surface Areas and Volume of a Cuboid and Cube
Exercise 18.3 | Q 7.2 | पृष्ठ ३५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×