Advertisements
Advertisements
प्रश्न
If cos A = `5/13`, then verify that `cosA/(1 - tanA) + sinA/(1 - cotA) = cosA + sinA`
बेरीज
उत्तर
Given, cosA = `5/13 = ("Base(B)")/("Hypotenuse(H)")`
By Pythagoras theorem, we get
H2 = P2 + B2
∴ (13)2 = P2 + (5)2
∴ 169 = P2 + 25
∴ 169 − 25 = p2
∴ 144 = p2
∴ p = 12
Now, we have to verify that
`cosA/(1 - tanA) + sinA/(1 - cotA) = cos A + sinA`
LHS = `cosA/(1 - tanA) + sinA/(1 - cotA)`
`(5/13)/(1 - 12/5) + (12/13)/(1 - 5/12)`
= `(5/13)/((5 - 12)/5) + (12/13)/((12 - 5)/12)`
= `5/13 xx (-5/7) + 12/13 xx 12/7`
= `-25/91 + 144/91`
= `119/91`
= `17/13`
RHS = cosA + sinA
= `5/13 + 12/13`
= `17/13`
LHS = RHS, Hence proved.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?