English

If cos A = 513, then verify that cosA1-tanA+sinA1-cotA=cosA+sinA - Mathematics

Advertisements
Advertisements

Question

If cos A = `5/13`, then verify that `cosA/(1 - tanA) + sinA/(1 - cotA) = cosA + sinA`

Sum

Solution

Given, cosA = `5/13 = ("Base(B)")/("Hypotenuse(H)")` 

By Pythagoras theorem, we get

H2 = P2 + B2

∴ (13)2 = P2 + (5)2

∴ 169 = P2 + 25

∴ 169 − 25 = p2

∴ 144 = p2

∴ p = 12

Now, we have to verify that

`cosA/(1 - tanA) + sinA/(1 - cotA) = cos A + sinA`

LHS = `cosA/(1 - tanA) + sinA/(1 - cotA)`

`(5/13)/(1 - 12/5) + (12/13)/(1 - 5/12)`

= `(5/13)/((5 - 12)/5) + (12/13)/((12 - 5)/12)`

= `5/13 xx (-5/7) + 12/13 xx 12/7`

= `-25/91 + 144/91`

= `119/91`

= `17/13`

RHS = cosA + sinA

= `5/13 + 12/13`

= `17/13`

LHS = RHS, Hence proved.

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Basic Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×