English

Prove that (sinθ + cosecθ)2 + (cosθ + secθ)2 = 7 + tan2θ + cot2θ. - Mathematics

Advertisements
Advertisements

Question

Prove that (sinθ + cosecθ)2 + (cosθ + secθ)= 7 + tan2θ + cot2θ.

Sum

Solution 1

LHS = (sinθ + cosecθ)2 + (cosθ + secθ)2

= sin2θ + cosec2θ + 2sinθ . cosecθ + cos2θ + sec2θ + 2cosθ . secθ  ...[∵ (a + b)2 = a2 + 2ab + b2]

= `(sin^2θ + cos^2θ) + (1 + cot^2θ) + 2sinθ 1/sinθ + (1 + tan^2θ) + 2cosθ1/(cosθ)`  `[∵ cosec^2θ = 1 + cot^2θ, sec^2θ = 1 + tan^2θ,
cosecθ = 1/(sinθ) and secθ = 1/cosθ ]`

= 1 + 1 + cot2θ + 2 + 1 + tan2θ + 2  ...[∵ sin2θ + cos2θ = 1]

= 7 + tan2θ + cot2θ

= RHS, Hence proved.

shaalaa.com

Solution 2

LHS = (sinθ + cosecθ)2 + (cosθ + secθ)2

= sin2θ + cosec2θ + 2sinθ . cosecθ + cos2θ + sec2θ + 2cosθ . secθ  

= (sin2θ + cos2θ) + cosec2θ + sec2θ + 2 + 2      ...(∵ sinθ · cosecθ = 1 and secθ · cosθ = 1]

= 1 + cosec2θ + sec2θ + 4    ...[∵ sin2θ+ cos2θ = 1]

= 5 + (1 + cot2θ) + (1 + tan2θ)

= 7 + cot2θ + tan2θ = R.H.S.

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Basic Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×