Advertisements
Advertisements
प्रश्न
If log102 = a and log103 = b ; express each of the following in terms of 'a' and 'b': log 12
उत्तर
Given that log102 = a and log103 = b
log 12
= log 2 x 2 x 3
= log 2 x 2 + log 3 ...[ logamn = logam + logan ]
= log 22 + log 3
= 2log 2 + log 3 ...[ nlogam = logamn ]
= 2a + b ...[ ∵ log102 = a and log103 = b ]
APPEARS IN
संबंधित प्रश्न
Express the following in a form free from logarithm:
2 log x + 3 log y = log a
Prove that : `2"log" 15/18 - "log"25/162 + "log"4/9 = log 2 `
Find x, if : x - log 48 + 3 log 2 = `1/3`log 125 - log 3.
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 25
Solve for x :
`log 225/log15` = log x
Solve for x : ` (log 64)/(log 8)` = log x
State, true or false : log 1 x log 1000 = 0
State, true or false :
`log x/log y` = log x - log y
State, true or false :
If `log 25/log 5 = log x`, then x = 2.
If log10 8 = 0.90; find the value of : log10 4