मराठी

If P ( 9a -2 , - B) Divides the Line Segment Joining a (3a + 1 , - 3 ) and B (8a, 5) in the Ratio 3 : 1 , Find the Values of a and B . - Mathematics

Advertisements
Advertisements

प्रश्न

If P ( 9a -2  , - b) divides the line segment joining A (3a + 1 , - 3 ) and B (8a, 5) in the ratio 3 : 1 , find the values of a and b .

 
 
 
टीपा लिहा

उत्तर

It is given that P divides AB in the ratio 3 : 1.
Therefore, by section formula we have 

\[\Rightarrow 9a - 2 = \frac{3\left( 8a \right) + 1\left( 3a + 1 \right)}{3 + 1}\]

\[ \Rightarrow 4\left( 9a - 2 \right) = 24a + 3a + 1\]

\[ \Rightarrow 36a - 8 = 27a + 1\]

\[ \Rightarrow 9a = 9\]

\[ \Rightarrow a = 1\]

And , 

\[\Rightarrow - b = \frac{3\left( 5 \right) + 1\left( - 3 \right)}{3 + 1}\]
\[ \Rightarrow - 4b = 15 - 3\]
\[ \Rightarrow b = - 3\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.3 | Q 5 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The points (3, -4) and (-6, 2) are the extremities of a diagonal of a parallelogram. If the third vertex is (-1, -3). Find the coordinates of the fourth vertex.


If three consecutive vertices of a parallelogram are (1, -2), (3, 6) and (5, 10), find its fourth vertex.


Find the area of the triangle formed by joining the midpoints of the sides of the triangle whose vertices are A(2,1) B(4,3) and C(2,5)


Points A(-1, y) and B(5,7) lie on the circle with centre O(2, -3y).Find the value of y.


Find the ratio in which the point (−3, k) divides the line-segment joining the points (−5, −4) and (−2, 3). Also find the value of k ?


Find the coordinates of the centre of the circle passing through the points P(6, –6), Q(3, –7) and R (3, 3).


Find the centroid of the triangle whose vertices  is (−2, 3) (2, −1) (4, 0) .


Find the distance between the points \[\left( - \frac{8}{5}, 2 \right)\]  and \[\left( \frac{2}{5}, 2 \right)\] . 

 
 
 
 

Find the area of triangle with vertices ( ab+c) , (bc+a) and (ca+b).

 

The distance between the points (a cos 25°, 0) and (0, a cos 65°) is


The area of the triangle formed by (ab + c), (bc + a) and (ca + b)


If points (a, 0), (0, b) and (1, 1)  are collinear, then \[\frac{1}{a} + \frac{1}{b} =\]

 

If A(4, 9), B(2, 3) and C(6, 5) are the vertices of ∆ABC, then the length of median through C is


In which quadrant does the point (-4, -3) lie?


Find the point on the y-axis which is equidistant from the points (S, - 2) and (- 3, 2).


Find the point on the y-axis which is equidistant from the points (5, −2) and (−3, 2).


The distance of the point P(2, 3) from the x-axis is ______.


Point (–10, 0) lies ______.


Point (3, 0) lies in the first quadrant.


If the points P(1, 2), Q(0, 0) and R(x, y) are collinear, then find the relation between x and y.

Given points are P(1, 2), Q(0, 0) and R(x, y).

The given points are collinear, so the area of the triangle formed by them is `square`.

∴ `1/2 |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = square`

`1/2 |1(square) + 0(square) + x(square)| = square`

`square + square + square` = 0

`square + square` = 0

`square = square`

Hence, the relation between x and y is `square`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×