Advertisements
Advertisements
प्रश्न
If three consecutive vertices of a parallelogram are (1, -2), (3, 6) and (5, 10), find its fourth vertex.
If three consecutive vertices of a parallelogram ABCD are A (1,-2) , B (3,6) and C(5,10) find its fourth vertex D.
उत्तर १
Let ABCD be a parallelogram in which the coordinates of the vertices are A (1,−2);
B (3, 6) and C(5, 10). We have to find the coordinates of the fourth vertex.
Let the fourth vertex be D(x,y)
Since ABCD is a parallelogram, the diagonals bisect each other. Therefore the mid-point of the diagonals of the parallelogram will coincide.
Now to find the mid-point P(x,y) of two points `A(x_1, y_1)` and `B(x_2,y_1)` we use section formula as,
`P(x,y) = ((x_1 + x_2)/2,(y_1+ y_2)/2)`
The mid-point of the diagonals of the parallelogram will coincide.
So,
Co-oridinate of mid-point of AC = Co-ordinate of mid-point of BD
Therefore,
`((5+1)/2, (10-2)/2) = ((x+3)/2, (y + 6)/2)`
`((x + 3)/2 ,(y + 6)/2) = (3,4)`
Now equate the individual terms to get the unknown value. So,
`(x + 3)/2= 3`
Similarly
`(y + 6)/2 = 4`
y = 2
So the forth vertex is D(3,2)
उत्तर २
LetA (1,-2) , B (3,6) and C(5,10) be the three vertices of a parallelogram ABCD and the fourth vertex be D (a, b).
Join AC and BD intersecting at O.
We know that the diagonals of a parallelogram bisect each other Therefore, O is the midpoint of AC as well as BD.
`" Midpoint of AC "=((1+5)/2 , (-2+10)/2) = (6/2,8/2) = (3,4)`
`"Midpoint of BD "= ((3+a)/2 , (6+b)/2)`
Therefore , `(3+a)/2 = 3 and (6+b)/2 = 4`
⇒ 3+a =6 and 6+b=8
⇒ a = 6-3 and b = 8 -6
⇒ a= 3 and b = 2
Therefore, the fourth vertex is D (3,2) .
संबंधित प्रश्न
Prove that the points (−2, 5), (0, 1) and (2, −3) are collinear.
In what ratio is the line segment joining the points (-2,-3) and (3, 7) divided by the y-axis? Also, find the coordinates of the point of division.
Prove that the points A(-4,-1), B(-2, 4), C(4, 0) and D(2, 3) are the vertices of a rectangle.
The line joining the points (2, 1) and (5, -8) is trisected at the points P and Q. If point P lies on the line 2x - y + k = 0. Find the value of k.
Show that the following points are the vertices of a square:
A (6,2), B(2,1), C(1,5) and D(5,6)
Show that the following points are the vertices of a rectangle.
A (2, -2), B(14,10), C(11,13) and D(-1,1)
`"Find the ratio in which the poin "p (3/4 , 5/12) " divides the line segment joining the points "A (1/2,3/2) and B (2,-5).`
ABCD is rectangle formed by the points A(-1, -1), B(-1, 4), C(5, 4) and D(5, -1). If P,Q,R and S be the midpoints of AB, BC, CD and DA respectively, Show that PQRS is a rhombus.
Show that A(-4, -7), B(-1, 2), C(8, 5) and D(5, -4) are the vertices of a
rhombus ABCD.
Show that the points (−4, −1), (−2, −4) (4, 0) and (2, 3) are the vertices points of a rectangle.
Find the value of k if points A(k, 3), B(6, −2) and C(−3, 4) are collinear.
What is the area of the triangle formed by the points O (0, 0), A (6, 0) and B (0, 4)?
What is the distance between the points A (c, 0) and B (0, −c)?
If the distance between the points (3, 0) and (0, y) is 5 units and y is positive. then what is the value of y?
If the centroid of the triangle formed by the points (3, −5), (−7, 4), (10, −k) is at the point (k −1), then k =
In which quadrant does the point (-4, -3) lie?
The line segment joining the points A(2, 1) and B (5, - 8) is trisected at the points P and Q such that P is nearer to A. If P also lies on the line given by 2x - y + k= 0 find the value of k.
Abscissa of all the points on the x-axis is ______.
Abscissa of a point is positive in ______.
Assertion (A): The ratio in which the line segment joining (2, -3) and (5, 6) internally divided by x-axis is 1:2.
Reason (R): as formula for the internal division is `((mx_2 + nx_1)/(m + n) , (my_2 + ny_1)/(m + n))`