Advertisements
Advertisements
प्रश्न
If three consecutive vertices of a parallelogram are (1, -2), (3, 6) and (5, 10), find its fourth vertex.
If three consecutive vertices of a parallelogram ABCD are A (1,-2) , B (3,6) and C(5,10) find its fourth vertex D.
उत्तर १
Let ABCD be a parallelogram in which the coordinates of the vertices are A (1,−2);
B (3, 6) and C(5, 10). We have to find the coordinates of the fourth vertex.
Let the fourth vertex be D(x,y)
Since ABCD is a parallelogram, the diagonals bisect each other. Therefore the mid-point of the diagonals of the parallelogram will coincide.
Now to find the mid-point P(x,y) of two points `A(x_1, y_1)` and `B(x_2,y_1)` we use section formula as,
`P(x,y) = ((x_1 + x_2)/2,(y_1+ y_2)/2)`
The mid-point of the diagonals of the parallelogram will coincide.
So,
Co-oridinate of mid-point of AC = Co-ordinate of mid-point of BD
Therefore,
`((5+1)/2, (10-2)/2) = ((x+3)/2, (y + 6)/2)`
`((x + 3)/2 ,(y + 6)/2) = (3,4)`
Now equate the individual terms to get the unknown value. So,
`(x + 3)/2= 3`
Similarly
`(y + 6)/2 = 4`
y = 2
So the forth vertex is D(3,2)
उत्तर २
LetA (1,-2) , B (3,6) and C(5,10) be the three vertices of a parallelogram ABCD and the fourth vertex be D (a, b).
Join AC and BD intersecting at O.
We know that the diagonals of a parallelogram bisect each other Therefore, O is the midpoint of AC as well as BD.
`" Midpoint of AC "=((1+5)/2 , (-2+10)/2) = (6/2,8/2) = (3,4)`
`"Midpoint of BD "= ((3+a)/2 , (6+b)/2)`
Therefore , `(3+a)/2 = 3 and (6+b)/2 = 4`
⇒ 3+a =6 and 6+b=8
⇒ a = 6-3 and b = 8 -6
⇒ a= 3 and b = 2
Therefore, the fourth vertex is D (3,2) .
संबंधित प्रश्न
Prove that the points (4, 5) (7, 6), (6, 3) (3, 2) are the vertices of a parallelogram. Is it a rectangle.
The points A(2, 0), B(9, 1) C(11, 6) and D(4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.
Find the coordinates of the midpoints of the line segment joining
A(3,0) and B(-5, 4)
The base BC of an equilateral triangle ABC lies on y-axis. The coordinates of point C are (0, -3). The origin is the midpoint of the base. Find the coordinates of the points A and B. Also, find the coordinates of another point D such that ABCD is a rhombus.
Find the area of quadrilateral ABCD whose vertices are A(-5, 7), B(-4, -5) C(-1,-6) and D(4,5)
Find the point on x-axis which is equidistant from points A(-1,0) and B(5,0)
Find the ratio in which the point (−3, k) divides the line-segment joining the points (−5, −4) and (−2, 3). Also find the value of k ?
Find the ratio in which the line segment joining the points A(3, 8) and B(–9, 3) is divided by the Y– axis.
Show that `square` ABCD formed by the vertices A(-4,-7), B(-1,2), C(8,5) and D(5,-4) is a rhombus.
The abscissa of any point on y-axis is
The area of the triangle formed by the points P (0, 1), Q (0, 5) and R (3, 4) is
If the point \[C \left( - 1, 2 \right)\] divides internally the line segment joining the points A (2, 5) and B( x, y ) in the ratio 3 : 4 , find the value of x2 + y2 .
Find the value of k, if the points A(7, −2), B (5, 1) and C (3, 2k) are collinear.
The ratio in which the x-axis divides the segment joining (3, 6) and (12, −3) is
If Points (1, 2) (−5, 6) and (a, −2) are collinear, then a =
The ratio in which the line segment joining points A (a1, b1) and B (a2, b2) is divided by y-axis is
Point (0, –7) lies ______.
The point at which the two coordinate axes meet is called the ______.
Find the coordinates of the point whose abscissa is 5 and which lies on x-axis.
The distance of the point (–4, 3) from y-axis is ______.