Advertisements
Advertisements
प्रश्न
Prove that the points (4, 5) (7, 6), (6, 3) (3, 2) are the vertices of a parallelogram. Is it a rectangle.
उत्तर
Let A (4, 5); B (7, 6); C (6, 3) and D (3, 2) be the vertices of a quadrilateral. We have to prove that the quadrilateral ABCD is a parallelogram.
We should proceed with the fact that if the diagonals of a quadrilateral bisect each other than the quadrilateral is a parallelogram.
Now to find the mid-point P(x,y) of two points `A(x_1, y_1)` and `B(x_2,y_2)` we use section formula as,
`P(x,y) = ((x_1 + x_2)/2, (y_1 + y_2)/2)`
So the mid-point of the diagonal AC is,
`Q(x,y) = ((4 + 6)/2, (5 + 3)/2)`
= (5,4)
Therefore the mid-points of the diagonals are coinciding and thus diagonal bisects each other.
Hence ABCD is a parallelogram.
Now to check if ABCD is a rectangle, we should check the diagonal length.
`AC = sqrt((6 - 4)^2 + (3 - 5)^2)`
`= sqrt(4 + )4`
`= 2sqrt2`
Similarly,
`BD = sqrt((7 - 3)^2 + (6 - 2)^2)`
`= sqrt(16 + 16)`
`= 4sqrt2`
Diagonals are of different lengths.
Hence ABCD is not a rectangle.
APPEARS IN
संबंधित प्रश्न
Find the centre of the circle passing through (5, -8), (2, -9) and (2, 1).
Name the quadrilateral formed, if any, by the following points, and given reasons for your answers:
A(-1,-2) B(1, 0), C (-1, 2), D(-3, 0)
Find the points of trisection of the line segment joining the points:
5, −6 and (−7, 5),
Find the ratio in which the point (2, y) divides the line segment joining the points A (-2,2) and B (3, 7). Also, find the value of y.
Prove that the points A(-4,-1), B(-2, 4), C(4, 0) and D(2, 3) are the vertices of a rectangle.
In what ratio does the point (−4, 6) divide the line segment joining the points A(−6, 10) and B(3,−8)?
If the point ( x,y ) is equidistant form the points ( a+b,b-a ) and (a-b ,a+b ) , prove that bx = ay
Show that the following points are the vertices of a rectangle.
A (2, -2), B(14,10), C(11,13) and D(-1,1)
The line segment joining the points A(3,−4) and B(1,2) is trisected at the points P(p,−2) and Q `(5/3,q)`. Find the values of p and q.
If the points A(4,3) and B( x,5) lie on the circle with center O(2,3 ) find the value of x .
Find the coordinates of circumcentre and radius of circumcircle of ∆ABC if A(7, 1), B(3, 5) and C(2, 0) are given.
If the points P, Q(x, 7), R, S(6, y) in this order divide the line segment joining A(2, p) and B(7, 10) in 5 equal parts, find x, y and p.
If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.
What is the area of the triangle formed by the points O (0, 0), A (6, 0) and B (0, 4)?
If points Q and reflections of point P (−3, 4) in X and Y axes respectively, what is QR?
If the area of the triangle formed by the points (x, 2x), (−2, 6) and (3, 1) is 5 square units , then x =
The ratio in which the x-axis divides the segment joining (3, 6) and (12, −3) is
Points (1, –1) and (–1, 1) lie in the same quadrant.
Find the coordinates of the point whose ordinate is – 4 and which lies on y-axis.
If the points P(1, 2), Q(0, 0) and R(x, y) are collinear, then find the relation between x and y.
Given points are P(1, 2), Q(0, 0) and R(x, y).
The given points are collinear, so the area of the triangle formed by them is `square`.
∴ `1/2 |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = square`
`1/2 |1(square) + 0(square) + x(square)| = square`
`square + square + square` = 0
`square + square` = 0
`square = square`
Hence, the relation between x and y is `square`.