Advertisements
Advertisements
प्रश्न
Find the ratio in which the point (2, y) divides the line segment joining the points A (-2,2) and B (3, 7). Also, find the value of y.
उत्तर
The co-ordinates of a point which divided two points`(x_1,y_1)` and `(x_2,y_2)` internally in the ratio m:n is given by the formula,
`(x,y) = ((mx_2 + nx_1)/(m + n)), ((my_2 + ny_1)/(m+n)))`
Here we are given that the point P(2,y) divides the line joining the points A(−2,2) and B(3,7) in some ratio.
Let us substitute these values in the earlier mentioned formula.
`(2,y) = (((m(3) +n(-2))/(m + n))"," ((m(7)+n(2))/(m+n)))`
Equating the individual components we have
`2 = (m(3) + n(-2))/(m + n)`
2m + 2n = 3m - 2n
m - 4n
`m/n = 4/1`
We see that the ratio in which the given point divides the line segment is 4: 1.
Let us now use this ratio to find out the value of ‘y’.
`(2,y) = (((m(3) + n(-2))/(m + n))"," ((m(7) + n(2))/(m + n)))`
`(2,y) = (((4(3) + 1(-2))/(4 +1))","((4(7) + 1(2))/(4 +1)))`
Equating the individual components we have
`y = (4(7) + 1()2)/(4 + 1)`
y = 6
Thus the value of ‘y’ is 6
APPEARS IN
संबंधित प्रश्न
The three vertices of a parallelogram are (3, 4) (3, 8) and (9, 8). Find the fourth vertex.
If the point A (4,3) and B ( x,5) lies on a circle with the centre o (2,3) . Find the value of x.
ABCD is rectangle formed by the points A(-1, -1), B(-1, 4), C(5, 4) and D(5, -1). If P,Q,R and S be the midpoints of AB, BC, CD and DA respectively, Show that PQRS is a rhombus.
Find the area of quadrilateral PQRS whose vertices are P(-5, -3), Q(-4,-6),R(2, -3) and S(1,2).
Points (−4, 0) and (7, 0) lie
Show that ΔABC, where A(–2, 0), B(2, 0), C(0, 2) and ΔPQR where P(–4, 0), Q(4, 0), R(0, 2) are similar triangles.
Find the ratio in which the line segment joining the points A(3, −3) and B(−2, 7) is divided by the x-axis. Also, find the coordinates of the point of division.
If R (x, y) is a point on the line segment joining the points P (a, b) and Q (b, a), then prove that x + y = a + b.
Find the value of k, if the points A (8, 1) B(3, −4) and C(2, k) are collinear.
If \[D\left( - \frac{1}{5}, \frac{5}{2} \right), E(7, 3) \text{ and } F\left( \frac{7}{2}, \frac{7}{2} \right)\] are the mid-points of sides of \[∆ ABC\] , find the area of \[∆ ABC\] .
Two vertices of a triangle have coordinates (−8, 7) and (9, 4) . If the centroid of the triangle is at the origin, what are the coordinates of the third vertex?
If x is a positive integer such that the distance between points P (x, 2) and Q (3, −6) is 10 units, then x =
The coordinates of the circumcentre of the triangle formed by the points O (0, 0), A (a, 0 and B (0, b) are
What is the form of co-ordinates of a point on the X-axis?
Ordinate of all points on the x-axis is ______.
The perpendicular distance of the point P(3, 4) from the y-axis is ______.
Find the coordinates of the point which lies on x and y axes both.
Find the coordinates of the point whose abscissa is 5 and which lies on x-axis.
Seg AB is parallel to X-axis and coordinates of the point A are (1, 3), then the coordinates of the point B can be ______.
If the points P(1, 2), Q(0, 0) and R(x, y) are collinear, then find the relation between x and y.
Given points are P(1, 2), Q(0, 0) and R(x, y).
The given points are collinear, so the area of the triangle formed by them is `square`.
∴ `1/2 |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = square`
`1/2 |1(square) + 0(square) + x(square)| = square`
`square + square + square` = 0
`square + square` = 0
`square = square`
Hence, the relation between x and y is `square`.