Advertisements
Advertisements
प्रश्न
Two vertices of a triangle have coordinates (−8, 7) and (9, 4) . If the centroid of the triangle is at the origin, what are the coordinates of the third vertex?
उत्तर
We have to find the co-ordinates of the third vertex of the given triangle. Let the co-ordinates of the third vertex be(x , y) .
The co-ordinates of other two vertices are (−8, 7) and (9, 4)
The co-ordinate of the centroid is (0, 0)
We know that the co-ordinates of the centroid of a triangle whose vertices are `(x_ 1 , y _ 1) , (x_2 , y_2) , ( x_3 , y_3)` is-
`((x_1 + x_2 + x_3)/3 , (y_1 + y_2 +y_3)/3)`
So,
`(0 , 0 ) = ((x - 8 + 9)/3 , (y + 7 + 4) /3)`
Compare individual terms on both the sides-
`(x + 1 ) / 3 = 0`
So,
x= - 1
Similarly,
`(y + 11 ) / 3 = 0`
So,
y = - 11
So the co-ordinate of third vertex ( -1 , - 11 )
APPEARS IN
संबंधित प्रश्न
If (−2, 3), (4, −3) and (4, 5) are the mid-points of the sides of a triangle, find the coordinates of its centroid.
Find the ratio in which the line segment joining (-2, -3) and (5, 6) is divided by y-axis. Also, find the coordinates of the point of division in each case.
Prove that (4, 3), (6, 4) (5, 6) and (3, 5) are the angular points of a square.
If the poin A(0,2) is equidistant form the points B (3, p) and C (p ,5) find the value of p. Also, find the length of AB.
The base QR of a n equilateral triangle PQR lies on x-axis. The coordinates of the point Q are (-4, 0) and origin is the midpoint of the base. Find the coordinates of the points P and R.
Find the centroid of ΔABC whose vertices are A(2,2) , B (-4,-4) and C (5,-8).
Find the ratio in which the line segment joining the points A(3, 8) and B(–9, 3) is divided by the Y– axis.
The perpendicular distance of the P (4,3) from y-axis is
Points P, Q, R and S divides the line segment joining A(1, 2) and B(6, 7) in 5 equal parts. Find the coordinates of the points P, Q and R.
The points \[A \left( x_1 , y_1 \right) , B\left( x_2 , y_2 \right) , C\left( x_3 , y_3 \right)\] are the vertices of ΔABC .
(i) The median from A meets BC at D . Find the coordinates of the point D.
(ii) Find the coordinates of the point P on AD such that AP : PD = 2 : 1.
(iii) Find the points of coordinates Q and R on medians BE and CF respectively such thatBQ : QE = 2 : 1 and CR : RF = 2 : 1.
(iv) What are the coordinates of the centropid of the triangle ABC ?
Find the centroid of the triangle whose vertices is (−2, 3) (2, −1) (4, 0) .
Find the value(s) of k for which the points (3k − 1, k − 2), (k, k − 7) and (k − 1, −k − 2) are collinear.
If the points A (1,2) , O (0,0) and C (a,b) are collinear , then find a : b.
The distance between the points (cos θ, 0) and (sin θ − cos θ) is
The line segment joining points (−3, −4), and (1, −2) is divided by y-axis in the ratio.
If the centroid of the triangle formed by (7, x) (y, −6) and (9, 10) is at (6, 3), then (x, y) =
If the centroid of the triangle formed by the points (3, −5), (−7, 4), (10, −k) is at the point (k −1), then k =
The ratio in which the line segment joining P (x1, y1) and Q (x2, y2) is divided by x-axis is
The ratio in which the line segment joining points A (a1, b1) and B (a2, b2) is divided by y-axis is
Find the point on the y-axis which is equidistant from the points (S, - 2) and (- 3, 2).