हिंदी

Find the centroid of the triangle whose vertices  is (−2, 3) (2, −1) (4, 0) . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the centroid of the triangle whose vertices  is (−2, 3) (2, −1) (4, 0) .

संक्षेप में उत्तर

उत्तर

The co-ordinates of the centroid of a triangle whose vertices are (−2, 3); (2,−1); (4, 0) are-

`=((2-2+4)/3 , (3-1+0)/3)`

` = ((4/3,2/3))`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.4 | Q 1.2 | पृष्ठ ३७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right-angled isosceles triangle.


The points (3, -4) and (-6, 2) are the extremities of a diagonal of a parallelogram. If the third vertex is (-1, -3). Find the coordinates of the fourth vertex.


Prove that (4, 3), (6, 4) (5, 6) and (3, 5)  are the angular points of a square.


Show that the following points are the vertices of a square:

A (6,2), B(2,1), C(1,5) and D(5,6)


Show that the following points are the vertices of a rectangle.

A (2, -2), B(14,10), C(11,13) and D(-1,1)


Point A lies on the line segment PQ joining P(6, -6) and Q(-4, -1) in such a way that `(PA)/( PQ)=2/5` . If that point A also lies on the line 3x + k( y + 1 ) = 0, find the value of k.


In what ratio does y-axis divide the line segment joining the points (-4, 7) and (3, -7)?


Prove that the diagonals of a rectangle ABCD with vertices A(2,-1), B(5,-1) C(5,6) and D(2,6) are equal and bisect each other


Find the value of a, so that the point ( 3,a ) lies on the line represented by 2x - 3y =5 .


If the point  \[C \left( - 1, 2 \right)\] divides internally the line segment joining the points  A (2, 5)  and Bx) in the ratio 3 : 4 , find the value of x2 + y2 .

 

The points  \[A \left( x_1 , y_1 \right) , B\left( x_2 , y_2 \right) , C\left( x_3 , y_3 \right)\]   are the vertices of  ΔABC .
(i) The median from meets BC at D . Find the coordinates of the point  D.
(ii) Find the coordinates of the point on AD such that AP : PD  = 2 : 1.
(iii) Find the points of coordinates Q and on medians BE and CF respectively such thatBQ : QE = 2 : 1 and CR : RF = 2 : 1.
(iv) What are the coordinates of the centropid of the triangle ABC 

 
 

If three points (x1, y1) (x2, y2), (x3, y3) lie on the same line, prove that  \[\frac{y_2 - y_3}{x_2 x_3} + \frac{y_3 - y_1}{x_3 x_1} + \frac{y_1 - y_2}{x_1 x_2} = 0\]

 


If  \[D\left( - \frac{1}{5}, \frac{5}{2} \right), E(7, 3) \text{ and }  F\left( \frac{7}{2}, \frac{7}{2} \right)\]  are the mid-points of sides of  \[∆ ABC\] ,  find the area of  \[∆ ABC\] .


If points Q and reflections of point P (−3, 4) in X and Y axes respectively, what is QR?

 

The ratio in which the line segment joining points A (a1b1) and B (a2b2) is divided by y-axis is


The point on the x-axis which is equidistant from points (−1, 0) and (5, 0) is


In which quadrant does the point (-4, -3) lie?


The perpendicular distance of the point P(3, 4) from the y-axis is ______.


Find the coordinates of the point whose abscissa is 5 and which lies on x-axis.


If the points P(1, 2), Q(0, 0) and R(x, y) are collinear, then find the relation between x and y.

Given points are P(1, 2), Q(0, 0) and R(x, y).

The given points are collinear, so the area of the triangle formed by them is `square`.

∴ `1/2 |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = square`

`1/2 |1(square) + 0(square) + x(square)| = square`

`square + square + square` = 0

`square + square` = 0

`square = square`

Hence, the relation between x and y is `square`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×