Advertisements
Advertisements
प्रश्न
Point A lies on the line segment PQ joining P(6, -6) and Q(-4, -1) in such a way that `(PA)/( PQ)=2/5` . If that point A also lies on the line 3x + k( y + 1 ) = 0, find the value of k.
उत्तर
Let the coordinates of A be`(x,y) Here (PA)/(PQ) = 2/5 . so ,`
PA + AQ= PQ
`⇒PA +AQ =(5PA)/2 [∵ PA = 2/5 PQ]`
` ⇒AQ = (5PA)/2 - PA`
`⇒ (AQ)/(PA) = 3/2 `
`⇒ (PA)/(AQ) = 2/3 `
Let (x, y) be the coordinates of A, which dives PQ in the ratio 2 : 3 internally Then using section formula, we get
` X = (2 xx (-4) +3 xx (6))/(2+3) = (-8+18)/5= 10/5 = 2`
`y = (2 xx (-1) + 3 xx(-6))/(2+3) = (-2-18)/5 = (-20)/5 = -4`
Now, the point ( 2, -4 ) lies on the line 3x +k(y+1) = 0 ,therefore
3 × 2 +k(-4+1)=0
⇒ 3k = 6
`⇒ k =6/3 =2`
Hence, k=2.
संबंधित प्रश्न
In the seating arrangement of desks in a classroom three students Rohini, Sandhya and Bina are seated at A(3, 1), B(6, 4), and C(8, 6). Do you think they are seated in a line?
Find the coordinates of the points which divide the line segment joining the points (-4, 0) and (0, 6) in four equal parts.
Show that the following points are the vertices of a square:
A (6,2), B(2,1), C(1,5) and D(5,6)
ABCD is a rectangle whose three vertices are A(4,0), C(4,3) and D(0,3). Find the length of one its diagonal.
If `P(a/2,4)`is the mid-point of the line-segment joining the points A (−6, 5) and B(−2, 3), then the value of a is
A point whose abscissa and ordinate are 2 and −5 respectively, lies in
The perpendicular distance of the point P (4, 3) from x-axis is
If the point P(x, 3) is equidistant from the point A(7, −1) and B(6, 8), then find the value of x and find the distance AP.
Find the value of k, if the points A (8, 1) B(3, −4) and C(2, k) are collinear.
If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.
\[A\left( 6, 1 \right) , B(8, 2) \text{ and } C(9, 4)\] are three vertices of a parallelogram ABCD . If E is the mid-point of DC , find the area of \[∆\] ADE.
Write the perimeter of the triangle formed by the points O (0, 0), A (a, 0) and B (0, b).
Write the coordinates of the point dividing line segment joining points (2, 3) and (3, 4) internally in the ratio 1 : 5.
Write the condition of collinearity of points (x1, y1), (x2, y2) and (x3, y3).
If points (t, 2t), (−2, 6) and (3, 1) are collinear, then t =
If P(2, 4), Q(0, 3), R(3, 6) and S(5, y) are the vertices of a parallelogram PQRS, then the value of y is
Which of the points P(-1, 1), Q(3, - 4), R(1, -1), S (-2, -3), T(-4, 4) lie in the fourth quadrant?
If point P is midpoint of segment joining point A(– 4, 2) and point B(6, 2), then the coordinates of P are ______
The distance of the point P(2, 3) from the x-axis is ______.
The coordinates of a point whose ordinate is `-1/2` and abscissa is 1 are `-1/2, 1`.