हिंदी

If Points (T, 2t), (−2, 6) and (3, 1) Are Collinear, Then T = - Mathematics

Advertisements
Advertisements

प्रश्न

If points (t, 2t), (−2, 6) and (3, 1) are collinear, then t =

विकल्प

  • \[\frac{3}{4}\]

     

  • \[\frac{4}{3}\]

     

  • \[\frac{5}{3}\]

     

  • \[\frac{3}{5}\]

     

MCQ

उत्तर

We have three collinear points A (t,2t) ; B (-2,6) ; C (3,1).

In general if ` A (x_1 , y_1) ; B(x_2 , y_2 ); C (x_3 ,y_3)`  are collinear then,

`x_1 (y_2 - y_3 ) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2 ) = 0`

So,

t(6- 1) - 2(1 -2r) + 3 (2t - 6) = 0

So,

5t + 4t + 6t -2 - 18 = 0

So,

15t = 20

Therefore,

` t = 4/3`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.7 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.7 | Q 16 | पृष्ठ ६४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that the points (−2, 5), (0, 1) and (2, −3)  are collinear.


Name the quadrilateral formed, if any, by the following points, and given reasons for your answers:

A(-1,-2) B(1, 0), C (-1, 2), D(-3, 0)


Show that the following points are the vertices of a square:

A (0,-2), B(3,1), C(0,4) and D(-3,1)


Show that the following points are the vertices of a rectangle

A (0,-4), B(6,2), C(3,5) and D(-3,-1)


Find the coordinates of the midpoints of the line segment joining

A(3,0) and B(-5, 4)


Find the area of a quadrilateral ABCD whose vertices area A(3, -1), B(9, -5) C(14, 0) and D(9, 19).


In what ratio does the point C (4,5) divides the join of A (2,3)  and B (7,8) ?


ΔXYZ ∼ ΔPYR; In ΔXYZ, ∠Y = 60o, XY = 4.5 cm, YZ = 5.1 cm and XYPY =` 4/7` Construct ΔXYZ and ΔPYR.


If (0, −3) and (0, 3) are the two vertices of an equilateral triangle, find the coordinates of its third vertex.    


Show that ΔABC, where A(–2, 0), B(2, 0), C(0, 2) and ΔPQR where P(–4, 0), Q(4, 0), R(0, 2) are similar triangles.


If R (x, y) is a point on the line segment joining the points P (a, b) and Q (b, a), then prove that y = a + b.


If three points (x1, y1) (x2, y2), (x3, y3) lie on the same line, prove that  \[\frac{y_2 - y_3}{x_2 x_3} + \frac{y_3 - y_1}{x_3 x_1} + \frac{y_1 - y_2}{x_1 x_2} = 0\]

 


If  \[D\left( - \frac{1}{5}, \frac{5}{2} \right), E(7, 3) \text{ and }  F\left( \frac{7}{2}, \frac{7}{2} \right)\]  are the mid-points of sides of  \[∆ ABC\] ,  find the area of  \[∆ ABC\] .


If P (x, 6) is the mid-point of the line segment joining A (6, 5) and B (4, y), find y.

 

If the centroid of the triangle formed by the points (a, b), (b, c) and (c, a) is at the origin, then a3 b3 + c3 =


If P is a point on x-axis such that its distance from the origin is 3 units, then the coordinates of a point on OY such that OP = OQ, are


If the points P (xy) is equidistant from A (5, 1) and B (−1, 5), then


The point on the x-axis which is equidistant from points (−1, 0) and (5, 0) is


A line intersects the y-axis and x-axis at P and Q , respectively. If (2,-5) is the mid-point of PQ, then the coordinates of P and Q are, respectively

 

Write the equations of the x-axis and y-axis. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×