हिंदी

Show that the Following Points Are the Vertices of a Square: a (0,-2), B(3,1), C(0,4) and D(-3,1) - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the following points are the vertices of a square:

A (0,-2), B(3,1), C(0,4) and D(-3,1)

उत्तर

The given points are  A (0,-2), B(3,1), C(0,4) and D(-3,1)

`AB = sqrt ((3-0)^2 +(1+2)^2) = sqrt((3)^2+(3)^2) = sqrt(9+9) = sqrt(18) = 3sqrt(2)   units`

`BC = sqrt ((0-3)^2 +(4-1)^2) = sqrt((-3)^2 +(3)^2) = sqrt(9+9) = sqrt(18) = 3 sqrt(2)  units`

`CD = sqrt((-3-0)^2 + (1-4)^2)  = sqrt((-3)^2 +(-3)^2 ) = sqrt(9+9) = sqrt(18) = 3 sqrt(2)  units`

`DA = sqrt((-3-0)^2 +(1+2)^2) = sqrt((-3)^2 +(3)^2) = sqrt(9+9) = sqrt(18) = 3 sqrt(2)  units`

Therefore, `AB = BC = CD = DA = 3 sqrt(2)  units`

Also , 

 `AC= sqrt((0-0)^2 + (4+2)^2) = sqrt((0)^2 +(6)^2 ) = sqrt(36) = 6  units`

`BD = sqrt((-3-3)^2 +(1-1)^2) = sqrt((-6)^2 +(0)^2) = sqrt(36) =6  units`

Thus, diagonal AC = diagonal BD 

Therefore, the given points from a square.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Coordinate Geomentry - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 16 Coordinate Geomentry
Exercises 1 | Q 26.3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

On which axis do the following points lie?

Q(0, -2)


Find a point on y-axis which is equidistant from the points (5, -2) and (-3, 2).


Prove that (4, 3), (6, 4) (5, 6) and (3, 5)  are the angular points of a square.


Find the coordinates of the points which divide the line segment joining the points (-4, 0) and (0, 6) in four equal parts.


Points P, Q, R and S divide the line segment joining the points A(1,2) and B(6,7) in five equal parts. Find the coordinates of the points P,Q and R


If the point P(k-1, 2) is equidistant from the points A(3,k) and B(k,5), find the value of k.


If `P(a/2,4)`is the mid-point of the line-segment joining the points A (−6, 5) and B(−2, 3), then the value of a is


Find the value of k, if the points A (8, 1) B(3, −4) and C(2, k) are collinear.

 

If three points (x1, y1) (x2, y2), (x3, y3) lie on the same line, prove that  \[\frac{y_2 - y_3}{x_2 x_3} + \frac{y_3 - y_1}{x_3 x_1} + \frac{y_1 - y_2}{x_1 x_2} = 0\]

 


Write the coordinates of the point dividing line segment joining points (2, 3) and (3, 4) internally in the ratio 1 : 5.


Find the area of triangle with vertices ( ab+c) , (bc+a) and (ca+b).

 

The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is


If the area of the triangle formed by the points (x, 2x), (−2, 6)  and (3, 1) is 5 square units , then x =


The line segment joining points (−3, −4), and (1, −2) is divided by y-axis in the ratio. 


The coordinates of the fourth vertex of the rectangle formed by the points (0, 0), (2, 0), (0, 3) are


In which quadrant does the point (-4, -3) lie?


What is the nature of the line which includes the points (-5, 5), (6, 5), (-3, 5), (0, 5)?


Points (1, – 1), (2, – 2), (4, – 5), (– 3, – 4) ______.


Point (3, 0) lies in the first quadrant.


The distance of the point (–6, 8) from x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×