हिंदी

If the Point P(K-1, 2) is Equidistant from the Points A(3,K) and B(K,5), Find the Value of K. - Mathematics

Advertisements
Advertisements

प्रश्न

If the point P(k-1, 2) is equidistant from the points A(3,k) and B(k,5), find the value of k.

संक्षेप में उत्तर

उत्तर १

The given points are P(k-1, 2) , A(3,k) and B(k,5).

∵ AP =BP

∴ AP= BP2

`⇒ (k-1-3)^2 +(2-k)^2 = (k-1-k)^2 + (2-5)^2`

`⇒ (k-4)^2 +(2-k)^2 = (-1)^2 +(-3)^2`

`⇒ k^2 -8y +16+4+k^2 -4k =1+9`

`⇒ k^2 -6y +5 =0`

`⇒ (k-1)(k-5)=0`

`⇒  k=1 or k=5`

Hence , k=1 or k=5 

shaalaa.com

उत्तर २

It is given that P(− 1, 2) is equidistant from the points A(3, k) and B(k, 5).
∴ AP = BP

\[\Rightarrow \sqrt{\left[ \left( k - 1 \right) - 3 \right]^2 + \left( 2 - k \right)^2} = \sqrt{\left[ \left( k - 1 \right) - k \right]^2 + \left( 2 - 5 \right)^2} \left( \text{ Distance formula }  \right)\]

\[ \Rightarrow \sqrt{\left( k - 4 \right)^2 + \left( 2 - k \right)^2} = \sqrt{\left( - 1 \right)^2 + \left( - 3 \right)^2}\]

Squaring on both sides, we get 

\[k^2 - 8k + 16 + 4 - 4k + k^2 = 10\]
\[ \Rightarrow 2 k^2 - 12k + 10 = 0\]
\[ \Rightarrow k^2 - 6k + 5 = 0\]
\[ \Rightarrow \left( k - 1 \right)\left( k - 5 \right) = 0\]

\[\Rightarrow k - 1 = 0 \text{ or k }  - 5 = 0\]

\[ \Rightarrow k = 1 or k = 5\]

Thus, the value of k is 1 or 5.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.2 | Q 36 | पृष्ठ १६
आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 16 Coordinate Geomentry
Exercises 4 | Q 4

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find a point on the x-axis which is equidistant from the points (7, 6) and (−3, 4).


A (3, 2) and B (−2, 1)  are two vertices of a triangle ABC whose centroid G has the coordinates `(5/3,-1/3)`Find the coordinates of the third vertex C of the triangle.


Find the coordinates of the point where the diagonals of the parallelogram formed by joining the points (-2, -1), (1, 0), (4, 3) and(1, 2) meet


Determine the ratio in which the straight line x - y - 2 = 0 divides the line segment
joining (3, -1) and (8, 9).


Show that the points A(3,0), B(4,5), C(-1,4) and D(-2,-1) are the vertices of a rhombus. Find its area.


Find the co-ordinates of the point which divides the join of A(-5, 11) and B(4,-7) in the ratio 7 : 2


Find the possible pairs of coordinates of the fourth vertex D of the parallelogram, if three of its vertices are A(5, 6), B(1, –2) and C(3, –2).


Two points having same abscissae but different ordinate lie on


If (0, −3) and (0, 3) are the two vertices of an equilateral triangle, find the coordinates of its third vertex.    


Find the centroid of the triangle whose vertices  is (−2, 3) (2, −1) (4, 0) .


Find the value of k, if the points A(7, −2), B (5, 1) and (3, 2k) are collinear.

 

Find the value of k, if the points A (8, 1) B(3, −4) and C(2, k) are collinear.

 

If the points A(−1, −4), B(bc) and C(5, −1) are collinear and 2b + c = 4, find the values of b and c.


What is the area of the triangle formed by the points O (0, 0), A (6, 0) and B (0, 4)?

 

Find the values of x for which the distance between the point P(2, −3), and Q (x, 5) is 10.

 

If points A (5, pB (1, 5), C (2, 1) and D (6, 2) form a square ABCD, then p =


The coordinates of the circumcentre of the triangle formed by the points O (0, 0), A (a, 0 and B (0, b) are


A line intersects the y-axis and x-axis at P and Q , respectively. If (2,-5) is the mid-point of PQ, then the coordinates of P and Q are, respectively

 

The point R divides the line segment AB, where A(−4, 0) and B(0, 6) such that AR=34AB.">AR = `3/4`AB. Find the coordinates of R.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×