Advertisements
Advertisements
प्रश्न
If the point A(0, 2) is equidistant from the points B(3, p) and C(p, 5), find p. Also, find the length of AB.
If a point A(0, 2) is equidistant from the points B(3, p) and C(p, 5), then find the value of p.
उत्तर १
The given points are A(0, 2), B(3, p) and C(p, 5).
It is given that A is equidistant from B and C.
∴ AB = AC
⇒ AB2 = AC2
⇒ (3 − 0)2 + (p − 2)2 = (p − 0)2 + (5 − 2)2
⇒ 9 + p2 + 4 − 4p = p2 + 9
⇒ 4 − 4p = 0
⇒ 4p = 4
⇒ p = 1
Thus, the value of p is 1.
Length of AB `=sqrt((3-0)^2+(1-2)^2)=sqrt(3^2+(-1)^2)=sqrt(9+1)=sqrt(10) units`
उत्तर २
It is given that A(0, 2) is equidistant from the points B(3, p) and C(p, 5).
∴ AB = AC
\[\Rightarrow \sqrt{\left( 3 - 0 \right)^2 + \left( p - 2 \right)^2} = \sqrt{\left( p - 0 \right)^2 + \left( 5 - 2 \right)^2}\] (Distance formula)
Squaring on both sides, we get
\[9 + p^2 - 4p + 4 = p^2 + 9\]
\[ \Rightarrow - 4p + 4 = 0\]
\[ \Rightarrow p = 1\]
Thus, the value of p is 1.
APPEARS IN
संबंधित प्रश्न
If the point (x, y) is equidistant from the points (a + b, b – a) and (a – b, a + b), prove that bx = ay
If the point P(x, y ) is equidistant from the points A(5, 1) and B (1, 5), prove that x = y.
Find the distance of the following points from the origin:
(iii) C (-4,-6)
If the point P(2, 1) lies on the line segment joining points A(4, 2) and B(8, 4), then ______.
Prove that the points (4 , 6) , (- 1 , 5) , (- 2, 0) and (3 , 1) are the vertices of a rhombus.
PQR is an isosceles triangle . If two of its vertices are P (2 , 0) and Q (2 , 5) , find the coordinates of R if the length of each of the two equal sides is 3.
Find the distance between the points (a, b) and (−a, −b).
A point P lies on the x-axis and another point Q lies on the y-axis.
Write the abscissa of point Q.
Show that P(– 2, 2), Q(2, 2) and R(2, 7) are vertices of a right angled triangle
A circle drawn with origin as the centre passes through `(13/2, 0)`. The point which does not lie in the interior of the circle is ______.