Advertisements
Advertisements
प्रश्न
If the point P(x, y ) is equidistant from the points A(5, 1) and B (1, 5), prove that x = y.
उत्तर
The distance d between two points `(x_1,y_1)` ``nd `(x_2,y_2)` is given by the formula
`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`
The three given points are P(x, y), A(5,1) and B(1,5).
Now let us find the distance between ‘P’ and ‘A’.
`PA = sqrt((x - 5)^2 + (y - 1)^2)`
Now, let us find the distance between ‘P’ and ‘B’.
`PB = sqrt((x - 1)^2 + (y - 5)^2)`
It is given that both these distances are equal. So, let us equate both the above equations,
PA = PB
`sqrt((x - 5)^2 + (y -1)^2) = sqrt((x - 1)^2 + (y - 5)^2)`
Squaring on both sides of the equation we get,
`(x - 5)^2 + (y - 1)^2 = (x - 1)^2 + (y - 5)^2`
`=> x^2 + 25 - 10x + y^2 + 1 - 2y = x^2 + 1 - 2x + y^2 + 25 - 10y`
`=> 26 - 10x - 2y = 26 - 10y - 2x`
`=> 10y - 2y = 10x - 2x`
`=> 8y = 8x`
=> y = x
Hence we have proved that x = y.
APPEARS IN
संबंधित प्रश्न
Given a line segment AB joining the points A(–4, 6) and B(8, –3). Find
1) The ratio in which AB is divided by y-axis.
2) Find the coordinates of the point of intersection.
3) The length of AB.
Find value of x for which the distance between the points P(x,4) and Q(9,10) is 10 units.
Find the distances between the following point.
R(–3a, a), S(a, –2a)
Find the distance between P and Q if P lies on the y - axis and has an ordinate 5 while Q lies on the x - axis and has an abscissa 12 .
Prove that the following set of point is collinear :
(5 , 1),(3 , 2),(1 , 3)
In what ratio does the point P(−4, y) divides the line segment joining the points A(−6, 10) and B(3, −8)? Hence find the value of y.
Given A = (3, 1) and B = (0, y - 1). Find y if AB = 5.
Calculate the distance between A (7, 3) and B on the x-axis whose abscissa is 11.
Find distance between point Q(3, – 7) and point R(3, 3)
Solution: Suppose Q(x1, y1) and point R(x2, y2)
x1 = 3, y1 = – 7 and x2 = 3, y2 = 3
Using distance formula,
d(Q, R) = `sqrt(square)`
∴ d(Q, R) = `sqrt(square - 100)`
∴ d(Q, R) = `sqrt(square)`
∴ d(Q, R) = `square`
Find distance CD where C(– 3a, a), D(a, – 2a)