मराठी

If the Point P(K-1, 2) is Equidistant from the Points A(3,K) and B(K,5), Find the Value of K. - Mathematics

Advertisements
Advertisements

प्रश्न

If the point P(k-1, 2) is equidistant from the points A(3,k) and B(k,5), find the value of k.

थोडक्यात उत्तर

उत्तर १

The given points are P(k-1, 2) , A(3,k) and B(k,5).

∵ AP =BP

∴ AP= BP2

`⇒ (k-1-3)^2 +(2-k)^2 = (k-1-k)^2 + (2-5)^2`

`⇒ (k-4)^2 +(2-k)^2 = (-1)^2 +(-3)^2`

`⇒ k^2 -8y +16+4+k^2 -4k =1+9`

`⇒ k^2 -6y +5 =0`

`⇒ (k-1)(k-5)=0`

`⇒  k=1 or k=5`

Hence , k=1 or k=5 

shaalaa.com

उत्तर २

It is given that P(− 1, 2) is equidistant from the points A(3, k) and B(k, 5).
∴ AP = BP

\[\Rightarrow \sqrt{\left[ \left( k - 1 \right) - 3 \right]^2 + \left( 2 - k \right)^2} = \sqrt{\left[ \left( k - 1 \right) - k \right]^2 + \left( 2 - 5 \right)^2} \left( \text{ Distance formula }  \right)\]

\[ \Rightarrow \sqrt{\left( k - 4 \right)^2 + \left( 2 - k \right)^2} = \sqrt{\left( - 1 \right)^2 + \left( - 3 \right)^2}\]

Squaring on both sides, we get 

\[k^2 - 8k + 16 + 4 - 4k + k^2 = 10\]
\[ \Rightarrow 2 k^2 - 12k + 10 = 0\]
\[ \Rightarrow k^2 - 6k + 5 = 0\]
\[ \Rightarrow \left( k - 1 \right)\left( k - 5 \right) = 0\]

\[\Rightarrow k - 1 = 0 \text{ or k }  - 5 = 0\]

\[ \Rightarrow k = 1 or k = 5\]

Thus, the value of k is 1 or 5.

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.2 | Q 36 | पृष्ठ १६
आर एस अग्रवाल Mathematics [English] Class 10
पाठ 16 Coordinate Geomentry
Exercises 4 | Q 4

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

On which axis do the following points lie?

S(0,5)


Find the points of trisection of the line segment joining the points:

5, −6 and (−7, 5),


Determine the ratio in which the straight line x - y - 2 = 0 divides the line segment
joining (3, -1) and (8, 9).


If the point P (2,2)  is equidistant from the points A ( -2,K ) and B( -2K , -3) , find k. Also, find the length of AP.


Find the area of a quadrilateral ABCD whose vertices area A(3, -1), B(9, -5) C(14, 0) and D(9, 19).


Find the area of quadrilateral PQRS whose vertices are P(-5, -3), Q(-4,-6),R(2, -3) and S(1,2).


Find the area of the triangle formed by joining the midpoints of the sides of the triangle whose vertices are A(2,1) B(4,3) and C(2,5)


Show that the points (−4, −1), (−2, −4) (4, 0) and (2, 3) are the vertices points of a rectangle.


If the point  \[C \left( - 1, 2 \right)\] divides internally the line segment joining the points  A (2, 5)  and Bx) in the ratio 3 : 4 , find the value of x2 + y2 .

 

What is the area of the triangle formed by the points O (0, 0), A (6, 0) and B (0, 4)?

 

Write the coordinates of the point dividing line segment joining points (2, 3) and (3, 4) internally in the ratio 1 : 5.


Write the formula for the area of the triangle having its vertices at (x1, y1), (x2, y2) and (x3, y3).


Find the values of x for which the distance between the point P(2, −3), and Q (x, 5) is 10.

 

The distance between the points (cos θ, 0) and (sin θ − cos θ) is


The area of the triangle formed by (ab + c), (bc + a) and (ca + b)


If A(4, 9), B(2, 3) and C(6, 5) are the vertices of ∆ABC, then the length of median through C is


Write the equations of the x-axis and y-axis. 


Abscissa of all the points on the x-axis is ______.


The coordinates of a point whose ordinate is `-1/2` and abscissa is 1 are `-1/2, 1`.


If the points P(1, 2), Q(0, 0) and R(x, y) are collinear, then find the relation between x and y.

Given points are P(1, 2), Q(0, 0) and R(x, y).

The given points are collinear, so the area of the triangle formed by them is `square`.

∴ `1/2 |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = square`

`1/2 |1(square) + 0(square) + x(square)| = square`

`square + square + square` = 0

`square + square` = 0

`square = square`

Hence, the relation between x and y is `square`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×