Advertisements
Advertisements
प्रश्न
On which axis do the following points lie?
S(0,5)
उत्तर
According to the Rectangular Cartesian Co-ordinate system of representing a point (x, y),
If x > 0, y > 0 then the point lies in the 1st quadrant
If x < 0, y > 0 then the point lies in the 2nd quadrant
If x < 0, y < 0 then the point lies in the 3rd quadrant
If x > 0, y < 0 then the point lies in the 4th quadrant
But in case
if `x = 0, y != 0`then the point lies on the y-axis
if `y =0, x != 0` then the point lies on the x-axis
Here the point is given to be S (0, 5). Comparing this with the standard form of (x, y) we have
x = 0
y = 5
Here we see that `x = 0, y != 0`
Hence the given point lies on the y-axis
APPEARS IN
संबंधित प्रश्न
(Street Plan): A city has two main roads which cross each other at the centre of the city. These two roads are along the North-South direction and East-West direction.
All the other streets of the city run parallel to these roads and are 200 m apart. There are 5 streets in each direction. Using 1cm = 200 m, draw a model of the city on your notebook. Represent the roads/streets by single lines.
There are many cross- streets in your model. A particular cross-street is made by two streets, one running in the North - South direction and another in the East - West direction. Each cross street is referred to in the following manner : If the 2nd street running in the North - South direction and 5th in the East - West direction meet at some crossing, then we will call this cross-street (2, 5). Using this convention, find:
- how many cross - streets can be referred to as (4, 3).
- how many cross - streets can be referred to as (3, 4).
Which point on the x-axis is equidistant from (5, 9) and (−4, 6)?
The three vertices of a parallelogram are (3, 4) (3, 8) and (9, 8). Find the fourth vertex.
Prove that (4, 3), (6, 4) (5, 6) and (3, 5) are the angular points of a square.
If the coordinates of the mid-points of the sides of a triangle be (3, -2), (-3, 1) and (4, -3), then find the coordinates of its vertices.
Show that the following points are the vertices of a rectangle.
A (2, -2), B(14,10), C(11,13) and D(-1,1)
Find the co-ordinates of the point which divides the join of A(-5, 11) and B(4,-7) in the ratio 7 : 2
If the point C(k,4) divides the join of A(2,6) and B(5,1) in the ratio 2:3 then find the value of k.
If the points A (2,3), B (4,k ) and C (6,-3) are collinear, find the value of k.
Find the ratio in which the point (−3, k) divides the line-segment joining the points (−5, −4) and (−2, 3). Also find the value of k ?
Points P, Q, R and S divides the line segment joining A(1, 2) and B(6, 7) in 5 equal parts. Find the coordinates of the points P, Q and R.
Write the coordinates of the point dividing line segment joining points (2, 3) and (3, 4) internally in the ratio 1 : 5.
The distance between the points (a cos 25°, 0) and (0, a cos 65°) is
If points (a, 0), (0, b) and (1, 1) are collinear, then \[\frac{1}{a} + \frac{1}{b} =\]
If the points(x, 4) lies on a circle whose centre is at the origin and radius is 5, then x =
The coordinates of the fourth vertex of the rectangle formed by the points (0, 0), (2, 0), (0, 3) are
Write the equations of the x-axis and y-axis.
Ordinate of all points on the x-axis is ______.
Point (3, 0) lies in the first quadrant.
In which quadrant, does the abscissa, and ordinate of a point have the same sign?