मराठी

If the Coordinates of the Mid-points of the Sides of a Triangle Be (3, -2), (-3, 1) and (4, -3), Then Find the Coordinates of Its Vertices. - Mathematics

Advertisements
Advertisements

प्रश्न

If the coordinates of the mid-points of the sides of a triangle be (3, -2), (-3, 1) and (4, -3), then find the coordinates of its vertices.

उत्तर

The co-ordinates of the midpoint `(x_m,y_m)` between two points `(x_1,y_1)` and `(x_2,y_2)` is given by,

`(x_n,y_m) = (((x_1 + y_2)/2)"," ((y_1 +y_2)/2))`

Let the three vertices of the triangle be `A(x_A, y_A)`, `B(x_B, y_B)` and `C(x_C, y_c)`.

The three midpoints are given. Let these points be `M_(AB) (3, -2)`,

`M_(BC) (-3, 1) and M_(CA) (4, -3)`.

Let us now equate these points using the earlier mentioned formula,

`(3, -2) = (((x_A + x_B)/2)"," ((y_A + y_B)/2))`

Equating the individual components we get,

`x_A + x_B = 6`

`y_A + y_B = -4`

Using the midpoint of another side we have,

`(-3,1) = (((x_B + x_C)/2)","((y_B + y_C)/2))`

Equating the individual components we get,

`x_B + x_C = -6`

`y_B + y_C = 2`

Using the midpoint of the last side we have,

`(4, -3) = (((x_A + x_C)/2)"," ((y_A + y_C)/2))`

Equating the individual components we get,

`x_A + x_C = 8`

`y_A + y_C = -6`

Adding up all the three equations which have variable ‘x’ alone we have,

`x_A + x_B + x_B + x_C + x_A + x_C = 6 - 6 + 8`

`2(x_A + x_B + x_C) = 8`

`x_A + x_B + x_C = 4`

Substituting `x_B + x_C = -6`in the above equation we have

`x_A + x_B + x_C = 4`

`x_A - 6 = 4`

`x_A = 10`

Therefore,

`x_A + x_C = 8`

`x_C = 8 - 10`

`x_C = -2`

And

`x_A + x_B = 6`

`x_B = 6 - 10`

`x_B = -4`

Adding up all the three equations which have variable ‘y’ alone we have,

`y_A + y_B + y_B + y_C + y_A + y_C = -4 + 2 - 6`

`2(y_A + y_B + y_C) = -8`

`y_A + y_B + y_C = -4`

Substituting `y_B + y_C = 2` in the above equation we have,

`y_A + y_B + y_C = 4`

`y_A + 2 = -4`

`y_A = -6`

Therefore,

`y_A + y_C = -6`

`y_C = -6 + 6`

`y_C  = 0`

And

`y_A + y_B = -4`

`y_B = -4 + 6`

`y_B = 2`

Therefore the co-ordinates of the three vertices of the triangle are A(10, 6), B(-4, 2), C(-2, 0)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.3 | Q 51 | पृष्ठ ३१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

On which axis do the following points lie?

P(5, 0)


If two opposite vertices of a square are (5, 4) and (1, −6), find the coordinates of its remaining two vertices.


Find a point on y-axis which is equidistant from the points (5, -2) and (-3, 2).


Prove that the points (3, -2), (4, 0), (6, -3) and (5, -5) are the vertices of a parallelogram.


In what ratio is the line segment joining (-3, -1) and (-8, -9) divided at the point (-5, -21/5)?


The line joining the points (2, 1) and (5, -8) is trisected at the points P and Q. If point P lies on the line 2x - y + k = 0. Find the value of k.


Find the coordinates of the midpoints of the line segment joining

A(3,0) and B(-5, 4)


Find the ratio which the line segment joining the pints A(3, -3) and B(-2,7) is divided by x -axis Also, find the point of division.


In what ratio does the point C (4,5) divides the join of A (2,3)  and B (7,8) ?


Find the coordinates of the circumcentre of a triangle whose vertices are (–3, 1), (0, –2) and (1, 3).


The perpendicular distance of the P (4,3)  from y-axis is


What is the area of the triangle formed by the points O (0, 0), A (6, 0) and B (0, 4)?

 

A line segment is of length 10 units. If the coordinates of its one end are (2, −3) and the abscissa of the other end is 10, then its ordinate is


If (x , 2), (−3, −4) and (7, −5) are collinear, then x =


What is the form of co-ordinates of a point on the X-axis?


Find the point on the y-axis which is equidistant from the points (5, −2) and (−3, 2).


Point (–10, 0) lies ______.


The points whose abscissa and ordinate have different signs will lie in ______.


Co-ordinates of origin are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×