हिंदी

If the Coordinates of the Mid-points of the Sides of a Triangle Be (3, -2), (-3, 1) and (4, -3), Then Find the Coordinates of Its Vertices. - Mathematics

Advertisements
Advertisements

प्रश्न

If the coordinates of the mid-points of the sides of a triangle be (3, -2), (-3, 1) and (4, -3), then find the coordinates of its vertices.

उत्तर

The co-ordinates of the midpoint `(x_m,y_m)` between two points `(x_1,y_1)` and `(x_2,y_2)` is given by,

`(x_n,y_m) = (((x_1 + y_2)/2)"," ((y_1 +y_2)/2))`

Let the three vertices of the triangle be `A(x_A, y_A)`, `B(x_B, y_B)` and `C(x_C, y_c)`.

The three midpoints are given. Let these points be `M_(AB) (3, -2)`,

`M_(BC) (-3, 1) and M_(CA) (4, -3)`.

Let us now equate these points using the earlier mentioned formula,

`(3, -2) = (((x_A + x_B)/2)"," ((y_A + y_B)/2))`

Equating the individual components we get,

`x_A + x_B = 6`

`y_A + y_B = -4`

Using the midpoint of another side we have,

`(-3,1) = (((x_B + x_C)/2)","((y_B + y_C)/2))`

Equating the individual components we get,

`x_B + x_C = -6`

`y_B + y_C = 2`

Using the midpoint of the last side we have,

`(4, -3) = (((x_A + x_C)/2)"," ((y_A + y_C)/2))`

Equating the individual components we get,

`x_A + x_C = 8`

`y_A + y_C = -6`

Adding up all the three equations which have variable ‘x’ alone we have,

`x_A + x_B + x_B + x_C + x_A + x_C = 6 - 6 + 8`

`2(x_A + x_B + x_C) = 8`

`x_A + x_B + x_C = 4`

Substituting `x_B + x_C = -6`in the above equation we have

`x_A + x_B + x_C = 4`

`x_A - 6 = 4`

`x_A = 10`

Therefore,

`x_A + x_C = 8`

`x_C = 8 - 10`

`x_C = -2`

And

`x_A + x_B = 6`

`x_B = 6 - 10`

`x_B = -4`

Adding up all the three equations which have variable ‘y’ alone we have,

`y_A + y_B + y_B + y_C + y_A + y_C = -4 + 2 - 6`

`2(y_A + y_B + y_C) = -8`

`y_A + y_B + y_C = -4`

Substituting `y_B + y_C = 2` in the above equation we have,

`y_A + y_B + y_C = 4`

`y_A + 2 = -4`

`y_A = -6`

Therefore,

`y_A + y_C = -6`

`y_C = -6 + 6`

`y_C  = 0`

And

`y_A + y_B = -4`

`y_B = -4 + 6`

`y_B = 2`

Therefore the co-ordinates of the three vertices of the triangle are A(10, 6), B(-4, 2), C(-2, 0)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.3 | Q 51 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right-angled isosceles triangle.


Show that the points A(5, 6), B(1, 5), C(2, 1) and D(6,2) are the vertices of a square.


Name the quadrilateral formed, if any, by the following points, and given reasons for your answers:

A(4, 5) B(7, 6), C (4, 3), D(1, 2)


Find the points of trisection of the line segment joining the points:

(2, -2) and (-7, 4).


Three consecutive vertices of a parallelogram are (-2,-1), (1, 0) and (4, 3). Find the fourth vertex.


The line joining the points (2, 1) and (5, -8) is trisected at the points P and Q. If point P lies on the line 2x - y + k = 0. Find the value of k.


Show that the following points are the vertices of a square:

A (6,2), B(2,1), C(1,5) and D(5,6)


Show that the points A(2,1), B(5,2), C(6,4) and D(3,3) are the angular points of a parallelogram. Is this figure a rectangle?


Point A lies on the line segment PQ joining P(6, -6) and Q(-4, -1) in such a way that `(PA)/( PQ)=2/5` . If that point A also lies on the line 3x + k( y + 1 ) = 0, find the value of k.


In what ratio is the line segment joining the points A(-2, -3) and B(3,7) divided by the yaxis? Also, find the coordinates of the point of division.


If the point `P (1/2,y)` lies on the line segment joining the points A(3, -5) and B(-7, 9) then find the ratio in which P divides AB. Also, find the value of y.


If the point P(k-1, 2) is equidistant from the points A(3,k) and B(k,5), find the value of k.


If the point C(k,4) divides the join of A(2,6) and B(5,1) in the ratio 2:3 then find the value of k. 


If (0, −3) and (0, 3) are the two vertices of an equilateral triangle, find the coordinates of its third vertex.    


Show that ΔABC, where A(–2, 0), B(2, 0), C(0, 2) and ΔPQR where P(–4, 0), Q(4, 0), R(0, 2) are similar triangles.


Find the ratio in which the line segment joining the points A(3, −3) and B(−2, 7) is divided by the x-axis. Also, find the coordinates of the point of division.   


Find the centroid of the triangle whose vertices  is (−2, 3) (2, −1) (4, 0) .


If the centroid of the triangle formed by (7, x) (y, −6) and (9, 10) is at (6, 3), then (x, y) =


Find the point on the y-axis which is equidistant from the points (S, - 2) and (- 3, 2).


The distance of the point (–4, 3) from y-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×