हिंदी

If (0, −3) and (0, 3) Are the Two Vertices of an Equilateral Triangle, Find the Coordinates of Its Third Vertex. - Mathematics

Advertisements
Advertisements

प्रश्न

If (0, −3) and (0, 3) are the two vertices of an equilateral triangle, find the coordinates of its third vertex.    

संक्षेप में उत्तर

उत्तर

Let the given points be A(0, −3) and B(0, 3). Suppose the coordinates of the third vertex be C(xy).

Now, ∆ABC is an equilateral triangle.

∴ AB = BC = CA

\[\sqrt{\left( 0 - 0 \right)^2 + \left( - 3 - 3 \right)^2} = \sqrt{\left( x - 0 \right)^2 + \left( y - 3 \right)^2} = \sqrt{\left( x - 0 \right)^2 + \left[ y - \left( - 3 \right) \right]^2}\]                  (Distance formula)

Squaring on both sides, we get   \[36 = x^2 + \left( y - 3 \right)^2 = x^2 + \left( y + 3 \right)^2\]
⇒ \[x^2 + \left( y - 3 \right)^2 = x^2 + \left( y + 3 \right)^2\]
\[x^2 + \left( y - 3 \right)^2 = 36\]
Now,

\[x^2 + \left( y - 3 \right)^2 = x^2 + \left( y + 3 \right)^2 \]

\[ \Rightarrow y^2 - 6y + 9 = y^2 + 6y + 9\]

\[ \Rightarrow - 12y = 0\]

\[ \Rightarrow y = 0\]

Putting y = 0 in

\[x^2 + \left( y - 3 \right)^2 = 36\] , we get

\[x^2 + \left( 0 - 3 \right)^2 = 36\]

\[ \Rightarrow x^2 = 36 - 9 = 27\]

\[ \Rightarrow x = \pm \sqrt{27} = \pm 3\sqrt{3}\]

Thus, the coordinates of the third vertex are

\[\left( 3\sqrt{3}, 0 \right)\]   or  \[\left( - 3\sqrt{3}, 0 \right)\]
 
 
 
 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.2 | Q 48 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The coordinates of the point P are (−3, 2). Find the coordinates of the point Q which lies on the line joining P and origin such that OP = OQ.


If (−2, 3), (4, −3) and (4, 5) are the mid-points of the sides of a triangle, find the coordinates of its centroid.


In what ratio is the line segment joining the points (-2,-3) and (3, 7) divided by the y-axis? Also, find the coordinates of the point of division.


If the poin A(0,2)  is equidistant form the points B (3, p) and  C (p ,5) find the value of p. Also, find the length of AB.


Find the points on the y-axis which is equidistant form the points A(6,5)  and B(- 4,3) 


Show hat A(1,2), B(4,3),C(6,6) and D(3,5) are the vertices of a parallelogram. Show that ABCD is not rectangle.


The midpoint of the line segment joining A (2a, 4) and B (-2, 3b) is C (1, 2a+1). Find the values of a and b.


Find the value of a, so that the point ( 3,a ) lies on the line represented by 2x - 3y =5 .


Find the coordinates of circumcentre and radius of circumcircle of ∆ABC if A(7, 1), B(3, 5) and C(2, 0) are given.


Point P(x, 4) lies on the line segment joining the points A(−5, 8) and B(4, −10). Find the ratio in which point P divides the line segment AB. Also find the value of x.


The abscissa of a point is positive in the


Two points having same abscissae but different ordinate lie on


Show that A (−3, 2), B (−5, −5), (2,−3), and D (4, 4) are the vertices of a rhombus.

 

The distance between the points (a cos 25°, 0) and (0, a cos 65°) is


If A (5, 3), B (11, −5) and P (12, y) are the vertices of a right triangle right angled at P, then y=


The area of the triangle formed by (ab + c), (bc + a) and (ca + b)


If the sum of X-coordinates of the vertices of a triangle is 12 and the sum of Y-coordinates is 9, then the coordinates of centroid are ______


Points (1, – 1), (2, – 2), (4, – 5), (– 3, – 4) ______.


The point whose ordinate is 4 and which lies on y-axis is ______.


Point (3, 0) lies in the first quadrant.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×