हिंदी

If the Poin A(0,2) is Equidistant Form the Points B (3, P) And C (P ,5) Find the Value of P. Also, Find the Length of Ab. - Mathematics

Advertisements
Advertisements

प्रश्न

If the poin A(0,2)  is equidistant form the points B (3, p) and  C (p ,5) find the value of p. Also, find the length of AB.

उत्तर

As per the question

AB = AC

`⇒ sqrt((0-3)^2 +(2-p)^2 ) = sqrt((0-p)^2 + (2-5)^2)`

`⇒ sqrt((-3)^2 +(2-p)^2) = sqrt((-p)^2 + (-3)^2)`

Squaring both sides, we get

`(-3)^2 +(2-p)^2 = (-p)^2 +(-3)^2`

`⇒ 9+4+p^2-4p=p^2+9`

`⇒ 4p =4`

⇒ p=1

Now,

`AB = sqrt((0-3)^2 +(2-p)^2)`

`= sqrt((-3)^2 +(2-1)^2))`                 (∵p=1)

`=sqrt(9+1)`

`= sqrt(10)`  units

Hence, p = 1  and AB =`sqrt(10)` units 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Coordinate Geomentry - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 16 Coordinate Geomentry
Exercises 1 | Q 7

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Let ABCD be a square of side 2a. Find the coordinates of the vertices of this square when The centre of the square is at the origin and coordinate axes are parallel to the sides AB and AD respectively.


The base PQ of two equilateral triangles PQR and PQR' with side 2a lies along y-axis such that the mid-point of PQ is at the origin. Find the coordinates of the vertices R and R' of the triangles.


Prove that the points (−2, 5), (0, 1) and (2, −3)  are collinear.


Prove that the points (3, -2), (4, 0), (6, -3) and (5, -5) are the vertices of a parallelogram.


Determine the ratio in which the point (-6, a) divides the join of A (-3, 1)  and B (-8, 9). Also, find the value of a.


If  p(x , y)  is point equidistant from the points A(6, -1)  and B(2,3) A , show that x – y = 3


Show that the following points are the vertices of a rectangle

A (0,-4), B(6,2), C(3,5) and D(-3,-1)


If (2, p) is the midpoint of the line segment joining the points A(6, -5) and B(-2,11) find the value of p.


If the point `P (1/2,y)` lies on the line segment joining the points A(3, -5) and B(-7, 9) then find the ratio in which P divides AB. Also, find the value of y.


Find the area of quadrilateral PQRS whose vertices are P(-5, -3), Q(-4,-6),R(2, -3) and S(1,2).


If P ( 9a -2  , - b) divides the line segment joining A (3a + 1 , - 3 ) and B (8a, 5) in the ratio 3 : 1 , find the values of a and b .

 
 
 

Write the distance between the points A (10 cos θ, 0) and B (0, 10 sin θ).

 

Write the perimeter of the triangle formed  by the points O (0, 0), A (a, 0) and B (0, b).

 

Find the values of x for which the distance between the point P(2, −3), and Q (x, 5) is 10.

 

The distance between the points (a cos 25°, 0) and (0, a cos 65°) is


If A (2, 2), B (−4, −4) and C (5, −8) are the vertices of a triangle, than the length of the median through vertex C is


If (−1, 2), (2, −1) and (3, 1) are any three vertices of a parallelogram, then


The ratio in which (4, 5) divides the join of (2, 3) and (7, 8) is


 In Fig. 14.46, the area of ΔABC (in square units) is


Find the coordinates of the point which lies on x and y axes both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×