हिंदी

Write the Distance Between the Points a (10 Cos θ, 0) and B (0, 10 Sin θ). - Mathematics

Advertisements
Advertisements

प्रश्न

Write the distance between the points A (10 cos θ, 0) and B (0, 10 sin θ).

 
टिप्पणी लिखिए

उत्तर

We have to find the distance between A( 10 cos θ,0) and B(0 , 10 sin θ ) .

In general, the distance between A`(x_1 , y_1)`  and B  `(x_2 , y_2)`is given by,

`AB = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`

So,

`AB= sqrt((10 cos θ - 0)^2 + (0 - 10  sin θ)^2)`

     `  = sqrt(10^2 (sin^2 θ + cos^2 θ   ) `

But according to the trigonometric identity,

`sin^2 θ + cos^2 θ = 1`

Therefore,

AB = 10 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.6 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.6 | Q 1 | पृष्ठ ६१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that the points (−2, 5), (0, 1) and (2, −3)  are collinear.


In Fig. 14.36, a right triangle BOA is given C is the mid-point of the hypotenuse AB. Show that it is equidistant from the vertices O, A  and B. 

    

We have a right angled triangle,`triangle BOA`  right angled at O. Co-ordinates are B (0,2b); A (2a0) and C (0, 0).

 

 

 


Find the coordinates of the circumcentre of the triangle whose vertices are (3, 0), (-1, -6) and (4, -1). Also, find its circumradius.


Find the points on the y-axis which is equidistant form the points A(6,5)  and B(- 4,3) 


If the point ( x,y ) is equidistant form the points ( a+b,b-a ) and (a-b ,a+b ) , prove that bx = ay


Show that the points A(3,0), B(4,5), C(-1,4) and D(-2,-1) are the vertices of a rhombus. Find its area.


If the point `P (1/2,y)` lies on the line segment joining the points A(3, -5) and B(-7, 9) then find the ratio in which P divides AB. Also, find the value of y.


Find the ratio in which the point (-1, y) lying on the line segment joining points A(-3, 10) and (6, -8) divides it. Also, find the value of y.


Find the centroid of ΔABC  whose vertices are A(2,2) , B (-4,-4) and C (5,-8).


Show that `square` ABCD formed by the vertices A(-4,-7), B(-1,2), C(8,5) and D(5,-4) is a rhombus.


ΔXYZ ∼ ΔPYR; In ΔXYZ, ∠Y = 60o, XY = 4.5 cm, YZ = 5.1 cm and XYPY =` 4/7` Construct ΔXYZ and ΔPYR.


If the point P(x, 3) is equidistant from the point A(7, −1) and B(6, 8), then find the value of x and find the distance AP.   


Find the value(s) of k for which the points (3k − 1, k − 2), (kk − 7) and (k − 1, −k − 2) are collinear.     


If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.      


Write the coordinates of a point on X-axis which is equidistant from the points (−3, 4) and (2, 5).


If P (2, 6) is the mid-point of the line segment joining A(6, 5) and B(4, y), find y. 


If A (5, 3), B (11, −5) and P (12, y) are the vertices of a right triangle right angled at P, then y=


The coordinates of the point P dividing the line segment joining the points A (1, 3) and B(4, 6) in the ratio 2 : 1 are


The point at which the two coordinate axes meet is called the ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×