Advertisements
Advertisements
प्रश्न
Write the perimeter of the triangle formed by the points O (0, 0), A (a, 0) and B (0, b).
उत्तर
The distance d between two points `(x_1 , y_1) ` and `(x_2 , y_2)` is given by the formula
`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`
The perimeter of a triangle is the sum of lengths of its sides.
The three vertices of the given triangle are O(0, 0), A(a, 0) and B(0, b).
Let us now find the lengths of the sides of the triangle.
`OA = sqrt((0 - a)^2 + (0-0)^2)`
`= sqrt(a^2)`
`OA = a`
`AB = sqrt((a - 0)^2 + (0-b)^2)`
`AB = sqrt(a^2 + b^2)`
`OB = sqrt((0 - 0)62 + (0 - b)^2)`
`= sqrt(b^2)`
`OB = b `
The perimeter ‘P’ of the triangle is thus,
p = OA + AB + OB
`= a + sqrt(a^2 + b^2) + b`
`P = a + b + sqrt(a^2 + b^2)`
Thus the perimeter of the triangle with the given vertices is `a + b + sqrt(a^2 + b^2)` .
APPEARS IN
संबंधित प्रश्न
If A(–2, 1), B(a, 0), C(4, b) and D(1, 2) are the vertices of a parallelogram ABCD, find the values of a and b. Hence find the lengths of its sides
Two vertices of an isosceles triangle are (2, 0) and (2, 5). Find the third vertex if the length of the equal sides is 3.
The coordinates of the point P are (−3, 2). Find the coordinates of the point Q which lies on the line joining P and origin such that OP = OQ.
If the points p (x , y) is point equidistant from the points A (5,1)and B ( -1,5) , Prove that 3x=2y
Show that the following points are the vertices of a square:
A (6,2), B(2,1), C(1,5) and D(5,6)
Show that the following points are the vertices of a rectangle.
A (2, -2), B(14,10), C(11,13) and D(-1,1)
`"Find the ratio in which the poin "p (3/4 , 5/12) " divides the line segment joining the points "A (1/2,3/2) and B (2,-5).`
The base BC of an equilateral triangle ABC lies on y-axis. The coordinates of point C are (0, -3). The origin is the midpoint of the base. Find the coordinates of the points A and B. Also, find the coordinates of another point D such that ABCD is a rhombus.
The area of the triangle formed by the points P (0, 1), Q (0, 5) and R (3, 4) is
If the point P(x, 3) is equidistant from the point A(7, −1) and B(6, 8), then find the value of x and find the distance AP.
Show that ΔABC, where A(–2, 0), B(2, 0), C(0, 2) and ΔPQR where P(–4, 0), Q(4, 0), R(0, 2) are similar triangles.
ABCD is a parallelogram with vertices \[A ( x_1 , y_1 ), B \left( x_2 , y_2 \right), C ( x_3 , y_3 )\] . Find the coordinates of the fourth vertex D in terms of \[x_1 , x_2 , x_3 , y_1 , y_2 \text{ and } y_3\]
If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.
If the centroid of the triangle formed by points P (a, b), Q(b, c) and R (c, a) is at the origin, what is the value of a + b + c?
Write the coordinates the reflections of points (3, 5) in X and Y -axes.
If points Q and reflections of point P (−3, 4) in X and Y axes respectively, what is QR?
If P (2, 6) is the mid-point of the line segment joining A(6, 5) and B(4, y), find y.
If P (x, 6) is the mid-point of the line segment joining A (6, 5) and B (4, y), find y.
If (−1, 2), (2, −1) and (3, 1) are any three vertices of a parallelogram, then
The coordinates of the fourth vertex of the rectangle formed by the points (0, 0), (2, 0), (0, 3) are