हिंदी

Abcd is a Parallelogram with Vertices a ( X 1 , Y 1 ) , B ( X 2 , Y 2 ) , C ( X 3 , Y 3 ) . Find the Coordinates of the Fourth Vertex D in Terms of X 1 , X 2 , X 3 , Y 1 , Y 2 and Y 3 - Mathematics

Advertisements
Advertisements

प्रश्न

 ABCD is a parallelogram with vertices  \[A ( x_1 , y_1 ), B \left( x_2 , y_2 \right), C ( x_3 , y_3 )\]   . Find the coordinates  of the fourth vertex D in terms of  \[x_1 , x_2 , x_3 , y_1 , y_2 \text{ and }  y_3\]

   
संक्षेप में उत्तर

उत्तर

Suppose the coordinates of D be (xy).
Since diagonals of a parallelogram bisect each other.

Therefore the midpoint of AC is the midpoint of BD, i.e

\[\left( \frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2} \right) \text{ and }       \left( \frac{x_2 + x}{2}, \frac{y_2 + y}{2} \right)\]  respectively.

\[\Rightarrow x_1 + x_3 = x_2 + x \text{ and } y_1 + y_3 = y_2 + y\]

\[ \Rightarrow x = x_1 + x_3 - x_2 \text{ and } y = y_1 + y_3 - y_2 \]

\[\text{ Thus coordinates of D are } \left( x_1 + x_3 - x_2 , y_1 + y_3 - y_2 \right)\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.3 | Q 59 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the distance between the following pair of points:

(a, 0) and (0, b)


Prove that the points (−2, 5), (0, 1) and (2, −3)  are collinear.


The three vertices of a parallelogram are (3, 4) (3, 8) and (9, 8). Find the fourth vertex.


Prove that the points (0, 0), (5, 5) and (-5, 5) are the vertices of a right isosceles triangle.


The line segment joining the points P(3, 3) and Q(6, -6) is trisected at the points A and B such that Ais nearer to P. If A also lies on the line given by 2x + y + k = 0, find the value of k.


If the poin A(0,2)  is equidistant form the points B (3, p) and  C (p ,5) find the value of p. Also, find the length of AB.


If the point C ( - 2,3)  is equidistant form the points A (3, -1) and Bx (x ,8)  , find the value of x. Also, find the distance between BC


Show hat A(1,2), B(4,3),C(6,6) and D(3,5) are the vertices of a parallelogram. Show that ABCD is not rectangle.


The line segment joining A( 2,9) and B(6,3)  is a diameter of a circle with center C. Find the coordinates of C


`"Find the ratio in which the poin "p (3/4 , 5/12) " divides the line segment joining the points "A (1/2,3/2) and B (2,-5).`


Find the centroid of ΔABC  whose vertices are A(2,2) , B (-4,-4) and C (5,-8).


The abscissa and ordinate of the origin are


If the points A (1,2) , O (0,0) and C (a,b) are collinear , then find  a : b.

 

If A(4, 9), B(2, 3) and C(6, 5) are the vertices of ∆ABC, then the length of median through C is


A line intersects the y-axis and x-axis at P and Q , respectively. If (2,-5) is the mid-point of PQ, then the coordinates of P and Q are, respectively

 

The distance of the point P(2, 3) from the x-axis is ______.


Point P(– 4, 2) lies on the line segment joining the points A(– 4, 6) and B(– 4, – 6).


Abscissa of a point is positive in ______.


(–1, 7) is a point in the II quadrant.


If the points P(1, 2), Q(0, 0) and R(x, y) are collinear, then find the relation between x and y.

Given points are P(1, 2), Q(0, 0) and R(x, y).

The given points are collinear, so the area of the triangle formed by them is `square`.

∴ `1/2 |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = square`

`1/2 |1(square) + 0(square) + x(square)| = square`

`square + square + square` = 0

`square + square` = 0

`square = square`

Hence, the relation between x and y is `square`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×