Advertisements
Advertisements
प्रश्न
ABCD is a parallelogram with vertices \[A ( x_1 , y_1 ), B \left( x_2 , y_2 \right), C ( x_3 , y_3 )\] . Find the coordinates of the fourth vertex D in terms of \[x_1 , x_2 , x_3 , y_1 , y_2 \text{ and } y_3\]
उत्तर
Suppose the coordinates of D be (x, y).
Since diagonals of a parallelogram bisect each other.
Therefore the midpoint of AC is the midpoint of BD, i.e
\[\Rightarrow x_1 + x_3 = x_2 + x \text{ and } y_1 + y_3 = y_2 + y\]
\[ \Rightarrow x = x_1 + x_3 - x_2 \text{ and } y = y_1 + y_3 - y_2 \]
\[\text{ Thus coordinates of D are } \left( x_1 + x_3 - x_2 , y_1 + y_3 - y_2 \right)\]
APPEARS IN
संबंधित प्रश्न
Name the quadrilateral formed, if any, by the following points, and given reasons for your answers:
A(-3, 5) B(3, 1), C (0, 3), D(-1, -4)
Prove that the points (3, 0), (4, 5), (-1, 4) and (-2, -1), taken in order, form a rhombus.
Also, find its area.
The points A(2, 0), B(9, 1) C(11, 6) and D(4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.
In what ratio is the line segment joining the points A(-2, -3) and B(3,7) divided by the yaxis? Also, find the coordinates of the point of division.
The base BC of an equilateral triangle ABC lies on y-axis. The coordinates of point C are (0, -3). The origin is the midpoint of the base. Find the coordinates of the points A and B. Also, find the coordinates of another point D such that ABCD is a rhombus.
Find the point on x-axis which is equidistant from points A(-1,0) and B(5,0)
Show that A(-4, -7), B(-1, 2), C(8, 5) and D(5, -4) are the vertices of a
rhombus ABCD.
The abscissa and ordinate of the origin are
If P ( 9a -2 , - b) divides the line segment joining A (3a + 1 , - 3 ) and B (8a, 5) in the ratio 3 : 1 , find the values of a and b .
If the vertices of a triangle are (1, −3), (4, p) and (−9, 7) and its area is 15 sq. units, find the value(s) of p.
Find the value of k if points A(k, 3), B(6, −2) and C(−3, 4) are collinear.
If three points (0, 0), \[\left( 3, \sqrt{3} \right)\] and (3, λ) form an equilateral triangle, then λ =
If the points (k, 2k), (3k, 3k) and (3, 1) are collinear, then k
The ratio in which (4, 5) divides the join of (2, 3) and (7, 8) is
The point on the x-axis which is equidistant from points (−1, 0) and (5, 0) is
The line segment joining the points A(2, 1) and B (5, - 8) is trisected at the points P and Q such that P is nearer to A. If P also lies on the line given by 2x - y + k= 0 find the value of k.
Point (–10, 0) lies ______.
If y-coordinate of a point is zero, then this point always lies ______.
The point whose ordinate is 4 and which lies on y-axis is ______.