मराठी

The point on the x-axis which is equidistant from points (−1, 0) and (5, 0) is - Mathematics

Advertisements
Advertisements

प्रश्न

The point on the x-axis which is equidistant from points (−1, 0) and (5, 0) is

पर्याय

  •  (0, 2)   

  •  (2, 0)      

  • (3, 0)     

  • (0, 3)

MCQ

उत्तर

Let A(−1, 0) and B(5, 0) be the given points. Suppose the required point on the x-axis be P(x, 0).
It is given that P(x, 0) is equidistant from A(−1, 0) and B(5, 0).
∴ PA = PB
⇒ PA= PB2 \[\Rightarrow \left[ x - \left( - 1 \right) \right]^2 + \left( 0 - 0 \right)^2 = \left( x - 5 \right)^2 + \left( 0 - 0 \right)^2\]            (Using distance formula)

\[\Rightarrow \left( x + 1 \right)^2 = \left( x - 5 \right)^2 \]
\[ \Rightarrow x^2 + 2x + 1 = x^2 - 10x + 25\]
\[ \Rightarrow 12x = 24\]
\[ \Rightarrow x = 2\]

Thus, the required point is (2, 0).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.7 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.7 | Q 44 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If A(–2, 1), B(a, 0), C(4, b) and D(1, 2) are the vertices of a parallelogram ABCD, find the values of a and b. Hence find the lengths of its sides


On which axis do the following points lie?

Q(0, -2)


Which point on the x-axis is equidistant from (5, 9) and (−4, 6)?


If (−2, 3), (4, −3) and (4, 5) are the mid-points of the sides of a triangle, find the coordinates of its centroid.


Find the point on x-axis which is equidistant from the points (−2, 5) and (2,−3).


In what ratio is the line segment joining (-3, -1) and (-8, -9) divided at the point (-5, -21/5)?


Prove that the points A(-4,-1), B(-2, 4), C(4, 0) and D(2, 3) are the vertices of a rectangle.


The base QR of a n equilateral triangle PQR lies on x-axis. The coordinates of the point Q are (-4, 0) and origin is the midpoint of the base. Find the coordinates of the points P and R.


The abscissa of a point is positive in the


If A(−3, 5), B(−2, −7), C(1, −8) and D(6, 3) are the vertices of a quadrilateral ABCD, find its area.


Find the area of a parallelogram ABCD if three of its vertices are A(2, 4), B(2 + \[\sqrt{3}\] , 5) and C(2, 6).                 

 


If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.      


Write the perimeter of the triangle formed  by the points O (0, 0), A (a, 0) and B (0, b).

 

What is the distance between the points (5 sin 60°, 0) and (0, 5 sin 30°)?

 

Find the value of a so that the point (3, a) lies on the line represented by 2x − 3y + 5 = 0


If A (2, 2), B (−4, −4) and C (5, −8) are the vertices of a triangle, than the length of the median through vertex C is


If the centroid of the triangle formed by (7, x) (y, −6) and (9, 10) is at (6, 3), then (x, y) =


The coordinates of the point P dividing the line segment joining the points A (1, 3) and B(4, 6) in the ratio 2 : 1 are


The distance of the point P(2, 3) from the x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×