मराठी

The Coordinates of the Point P Dividing the Line Segment Joining the Points a (1, 3) and B (4, 6) in the Ratio 2 : 1 Are - Mathematics

Advertisements
Advertisements

प्रश्न

The coordinates of the point P dividing the line segment joining the points A (1, 3) and B(4, 6) in the ratio 2 : 1 are

पर्याय

  • (2, 4)  

  • (3, 5)    

  •  (4, 2)    

  •  (5, 3)          

MCQ

उत्तर

It is given that P divides the line segment joining the points A(1, 3) and B(4, 6) in the ratio 2 : 1.
Using section formula, we get
Coordinates of P \[= \left( \frac{2 \times 4 + 1 \times 1}{2 + 1}, \frac{2 \times 6 + 1 \times 3}{2 + 1} \right) = \left( \frac{9}{3}, \frac{15}{3} \right) = \left( 3, 5 \right)\]

Thus, the coordinates of P are (3, 5).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.7 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.7 | Q 42 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right-angled isosceles triangle.


How will you describe the position of a table lamp on your study table to another person?


On which axis do the following points lie?

Q(0, -2)


Find the value of x such that PQ = QR where the coordinates of P, Q and R are (6, -1), (1, 3) and (x, 8) respectively.


Find a point on y-axis which is equidistant from the points (5, -2) and (-3, 2).


Find the points of trisection of the line segment joining the points:

(3, -2) and (-3, -4)


If the coordinates of the mid-points of the sides of a triangle be (3, -2), (-3, 1) and (4, -3), then find the coordinates of its vertices.


If the point `P (1/2,y)` lies on the line segment joining the points A(3, -5) and B(-7, 9) then find the ratio in which P divides AB. Also, find the value of y.


Find the value of a, so that the point ( 3,a ) lies on the line represented by 2x - 3y =5 .


A point whose abscissa is −3 and ordinate 2 lies in


If the point P(x, 3) is equidistant from the point A(7, −1) and B(6, 8), then find the value of x and find the distance AP.   


If A(−3, 5), B(−2, −7), C(1, −8) and D(6, 3) are the vertices of a quadrilateral ABCD, find its area.


Find the value(s) of k for which the points (3k − 1, k − 2), (kk − 7) and (k − 1, −k − 2) are collinear.     


Write the coordinates of a point on X-axis which is equidistant from the points (−3, 4) and (2, 5).


The ratio in which the line segment joining P (x1y1) and Q (x2, y2) is divided by x-axis is


The ratio in which the line segment joining points A (a1b1) and B (a2b2) is divided by y-axis is


The line segment joining the points A(2, 1) and B (5, - 8) is trisected at the points P and Q such that P is nearer to A. If P also lies on the line given by  2x - y + k= 0  find the value of k.


Point (–10, 0) lies ______.


If the points P(1, 2), Q(0, 0) and R(x, y) are collinear, then find the relation between x and y.

Given points are P(1, 2), Q(0, 0) and R(x, y).

The given points are collinear, so the area of the triangle formed by them is `square`.

∴ `1/2 |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = square`

`1/2 |1(square) + 0(square) + x(square)| = square`

`square + square + square` = 0

`square + square` = 0

`square = square`

Hence, the relation between x and y is `square`.


The coordinates of the point where the line 2y = 4x + 5 crosses x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×