Advertisements
Advertisements
प्रश्न
Find the value of x such that PQ = QR where the coordinates of P, Q and R are (6, -1), (1, 3) and (x, 8) respectively.
उत्तर
The distance d between two points `(x_1,y_1)` and `(x_2, y_2)` is given by the formula
`d= sqrt((x_1- x_2)^2 + (y_1 - y_2)^2)`
The three given points are P(6,−1), Q(1,3) and R(x,8).
Now let us find the distance between 'P’ and ‘Q’.
`PQ = sqrt((6 - 1)^2 + (-1 -3)^2)`
`= sqrt((5)^2 + (-4)^2)`
`= sqrt(25 + 16)`
`PQ = sqrt(41)`
Now, let us find the distance between 'Q' and 'R'.
`QR = sqrt((1- x)^2 + (3 - 8)^2)`
`QR = sqrt((1 - x)^2 = (-5)^2)`
It is given that both these distances are equal. So, let us equate both the above equations,
PQ = QR
`sqrt(41) =sqrt((1- x)^2 + (-5)^2)`
Squaring on both sides of the equation we get,
`41 = (1 - x^2) + (-5)^2`
`41 = 1 + x^2 - 2x + 25`
`15 = x^2 - 2x`
Now we have a quadratic equation. Solving for the roots of the equation we have,
`x^2 - 2x - 15 = 0`
`x^2 - 5x + 3x - 15 = 0`
`x(x - 5) + 3(x - 5) = 0`
(x - 5)(x + 3) = 0
Thus the roots of the above equation are 5 and −3.
Hence the values of 'x' are 5 or -3
APPEARS IN
संबंधित प्रश्न
Which point on the y-axis is equidistant from (2, 3) and (−4, 1)?
Determine the ratio in which the straight line x - y - 2 = 0 divides the line segment
joining (3, -1) and (8, 9).
If the points A (a, -11), B (5, b), C (2, 15) and D (1, 1) are the vertices of a parallelogram ABCD, find the values of a and b.
Find the points on the x-axis, each of which is at a distance of 10 units from the point A(11, –8).
Show that the points A(2,1), B(5,2), C(6,4) and D(3,3) are the angular points of a parallelogram. Is this figure a rectangle?
The line segment joining the points A(3,−4) and B(1,2) is trisected at the points P(p,−2) and Q `(5/3,q)`. Find the values of p and q.
In what ratio does the point P(2,5) divide the join of A (8,2) and B(-6, 9)?
Find the area of the triangle formed by joining the midpoints of the sides of the triangle whose vertices are A(2,1) B(4,3) and C(2,5)
Find the value(s) of k for which the points (3k − 1, k − 2), (k, k − 7) and (k − 1, −k − 2) are collinear.
What is the area of the triangle formed by the points O (0, 0), A (6, 0) and B (0, 4)?
Write the ratio in which the line segment doining the points A (3, −6), and B (5, 3) is divided by X-axis.
Find the area of triangle with vertices ( a, b+c) , (b, c+a) and (c, a+b).
The distance between the points (a cos 25°, 0) and (0, a cos 65°) is
The distance of the point (4, 7) from the y-axis is
If the centroid of the triangle formed by the points (3, −5), (−7, 4), (10, −k) is at the point (k −1), then k =
Students of a school are standing in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in figure. Is it possible to place Jaspal in the drill in such a way that he is equidistant from each of the four students A, B, C and D? If so, what should be his position?
The coordinates of a point whose ordinate is `-1/2` and abscissa is 1 are `-1/2, 1`.
Find the coordinates of the point whose ordinate is – 4 and which lies on y-axis.
The distance of the point (–6, 8) from x-axis is ______.