Advertisements
Advertisements
प्रश्न
Show that the points A(2,1), B(5,2), C(6,4) and D(3,3) are the angular points of a parallelogram. Is this figure a rectangle?
उत्तर
The given points are s A(2,1), B(5,2), C(6,4) and D(3,3)
`AB = sqrt((5-2)^2 +(2-1)^2 ) = sqrt((3)^2 +(1)^2 ) = sqrt(9+1) = sqrt(10) ` units
`BC = sqrt((6-5)^2 +(4-2)^2 )= sqrt((1)^2 +(2)^3) = sqrt(1+4) = sqrt(5) `units
`CD = sqrt((3-6)^2 +(3-4)^2) = sqrt((-3)^2 +(-1)^2) = sqrt(9+1) = sqrt(10) `units
`AD = sqrt((3-2)^2+(3-1)^2) = sqrt((1)^2 +(2)^2) = sqrt(1+4) = sqrt(5) ` units
Thus, AB = CD = `sqrt(10) "units and " BC= AD = sqrt(5) ` units
So, quadrilateral ABCD is a parallelogram
`Also , AC = sqrt((6-2)^2 +(4-1)^2) = sqrt((4)^2 +(3)^2 )= sqrt(16+9) = sqrt(25) = 5 ` units
`BD = sqrt((3-5) ^2 +(3-2)^2 ) = sqrt((-2)^2 +(1)^2) = sqrt(4+1) = sqrt(5) units `
But diagonal AC is not equal to diagonal BD. Hence, the given points do not form a rectangle.
APPEARS IN
संबंधित प्रश्न
The base PQ of two equilateral triangles PQR and PQR' with side 2a lies along y-axis such that the mid-point of PQ is at the origin. Find the coordinates of the vertices R and R' of the triangles.
Find the points of trisection of the line segment joining the points:
(2, -2) and (-7, 4).
If the point P (2,2) is equidistant from the points A ( -2,K ) and B( -2K , -3) , find k. Also, find the length of AP.
In what ratio does the point P(2,5) divide the join of A (8,2) and B(-6, 9)?
Points A(-1, y) and B(5,7) lie on the circle with centre O(2, -3y).Find the value of y.
The abscissa of any point on y-axis is
Prove hat the points A (2, 3) B(−2,2) C(−1,−2), and D(3, −1) are the vertices of a square ABCD.
Find the ratio in which the line segment joining the points A(3, −3) and B(−2, 7) is divided by the x-axis. Also, find the coordinates of the point of division.
Find the area of a parallelogram ABCD if three of its vertices are A(2, 4), B(2 + \[\sqrt{3}\] , 5) and C(2, 6).
What is the area of the triangle formed by the points O (0, 0), A (6, 0) and B (0, 4)?
If points Q and reflections of point P (−3, 4) in X and Y axes respectively, what is QR?
If P (2, 6) is the mid-point of the line segment joining A(6, 5) and B(4, y), find y.
The distance between the points (a cos 25°, 0) and (0, a cos 65°) is
If x is a positive integer such that the distance between points P (x, 2) and Q (3, −6) is 10 units, then x =
The coordinates of the fourth vertex of the rectangle formed by the points (0, 0), (2, 0), (0, 3) are
If A(x, 2), B(−3, −4) and C(7, −5) are collinear, then the value of x is
If segment AB is parallel Y-axis and coordinates of A are (1, 3), then the coordinates of B are ______
What are the coordinates of origin?
The perpendicular distance of the point P(3, 4) from the y-axis is ______.
The coordinates of a point whose ordinate is `-1/2` and abscissa is 1 are `-1/2, 1`.