मराठी

Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right-angled isosceles triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right-angled isosceles triangle.

बेरीज

उत्तर १

Let A(3, 0), B(6, 4) and C(–1, 3) be the given points

Now,

AB= `sqrt((6-3)^2+(4-0)^2)=sqrt(3^2+4^2)=sqrt(9+6)=sqrt25`

BC= `sqrt((-1-6)^2+(3-4)^2)=sqrt((-7)^2+(-1)^2)=sqrt(49+1)=sqrt50`

AC= `sqrt((-1-3)^2+(3-0)^2)=sqrt((-4)^2+3^2)=sqrt(16+9)=sqrt25`

∴ AB = AC

AB2 =`(sqrt25)=25`

BC2= `(sqrt50)=50`

AC2= `(sqrt25)=25`

∴ AB2 + AC2 =  BC2

Thus, ΔABC is a right-angled isosceles triangle.

shaalaa.com

उत्तर २

The distance d between two points `(x_1, y_1)` and `(x_2, y_2)` is given by the formula.

`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`

In an isosceles triangle there are two sides which are equal in length.

Here the three points are A(3, 0), B(6, 4) and C(−1, 3).

Let us check the length of the three sides of the triangle.

`AB = sqrt((3 - 6)^2 + (0 - 4)^2)`

`= sqrt((-3)^2 + (-4)^2)`

`= sqrt(9 + 16)`

`AB = sqrt(25)`

`BC = sqrt((6 + 1)^2 + (4 - 3)^2)`

`= sqrt((7)^2 + (1)^2)`

`= sqrt(49 + 1)`

`BC = sqrt50`

`AC = sqrt((3 + 1)^2 + (0 - 3)^2)`

`= sqrt((4)^2 + (-3)^2)`

`= sqrt(16 - 9)`

`AC = sqrt25`

Here, we see that two sides of the triangle are equal. So the triangle formed should be an isosceles triangle.

We can also observe that `BC^2 = AC^2 + AB^2`

Hence proved that the triangle formed by the three given points is an isosceles triangle.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.2 | Q 9 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Two vertices of an isosceles triangle are (2, 0) and (2, 5). Find the third vertex if the length of the equal sides is 3.


Which point on the x-axis is equidistant from (5, 9) and (−4, 6)?


Find the points of trisection of the line segment joining the points:

5, −6 and (−7, 5),


The points A(2, 0), B(9, 1) C(11, 6) and D(4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.


Find the coordinates of the points which divide the line segment joining the points (-4, 0) and (0, 6) in four equal parts.


If the point ( x,y ) is equidistant form the points ( a+b,b-a ) and (a-b ,a+b ) , prove that bx = ay


In what ratio is the line segment joining A(2, -3) and B(5, 6) divide by the x-axis? Also, find the coordinates of the pint of division.


In what ratio is the line segment joining the points A(-2, -3) and B(3,7) divided by the yaxis? Also, find the coordinates of the point of division.


Points A(-1, y) and B(5,7) lie on the circle with centre O(2, -3y).Find the value of y.


Show that A(-4, -7), B(-1, 2), C(8, 5) and D(5, -4) are the vertices of a
rhombus ABCD.


Mark the correct alternative in each of the following:
The point of intersect of the coordinate axes is


 If (a,b) is the mid-point of the line segment joining the points A (10, - 6) , B (k,4) and a - 2b = 18 , find the value of k and the distance AB.

 
 
 

Find the values of x for which the distance between the point P(2, −3), and Q (x, 5) is 10.

 

What is the distance between the points A (c, 0) and B (0, −c)?

 

If the points A (1,2) , O (0,0) and C (a,b) are collinear , then find  a : b.

 

The ratio in which (4, 5) divides the join of (2, 3) and (7, 8) is


If the line segment joining the points (3, −4), and (1, 2) is trisected at points P (a, −2) and Q \[\left( \frac{5}{3}, b \right)\] , Then,

 


The perpendicular distance of the point P(3, 4) from the y-axis is ______.


If the points P(1, 2), Q(0, 0) and R(x, y) are collinear, then find the relation between x and y.

Given points are P(1, 2), Q(0, 0) and R(x, y).

The given points are collinear, so the area of the triangle formed by them is `square`.

∴ `1/2 |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = square`

`1/2 |1(square) + 0(square) + x(square)| = square`

`square + square + square` = 0

`square + square` = 0

`square = square`

Hence, the relation between x and y is `square`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×