Advertisements
Advertisements
प्रश्न
Prove that the points A(-4,-1), B(-2, 4), C(4, 0) and D(2, 3) are the vertices of a rectangle.
उत्तर १
Let A (-4,-1); B (-2,-4); C (4, 0) and D (2, 3) be the vertices of a quadrilateral. We have to prove that the quadrilateral ABCD is a rectangle.
So we should find the lengths of opposite sides of quadrilateral ABCD.
`AB = sqrt((-2+4)^2) + (-4 + 1)^2)`
`= sqrt(4 + 9)`
`= sqrt13`
`CD = sqrt((4 - 2)^2 + (0 - 3)^2)`
`= sqrt(4 +9)`
`= sqrt13`
Opposite sides are equal. So now we will check the lengths of the diagonals.
`AC = sqrt((4 + 4)^2 + (0 + 1)^2)`
`= sqrt(64 + 1)`
`= sqrt(65)`
`BD = sqrt((2 + 2)^2 + (3 + 4)^2)`
`= sqrt(16 + 49)`
`= sqrt65`
Opposite sides are equal as well as the diagonals are equal. Hence ABCD is a rectangle.
उत्तर २
The given points are A (-4,-1); B (-2,-4); C (4, 0) and D (2, 3) .
`AB = sqrt({-2-(-4)}^2 + { -4-(-1)}^2) = sqrt ((2)^2+(-3)^2) = sqrt(4+9) = sqrt(13) ` units
` BC = sqrt({ 4-(-2)}^2+{0-(-4)}^2) = sqrt((6)^2 +(4)^2) = sqrt(36+16) = sqrt(52) = 2 sqrt(13) units`
`CD = sqrt((2-4)^2 +(3-0)^2) = sqrt((-2)^2 +(3)^2) = sqrt(4+9) = sqrt(13) units`
`AD = sqrt({2-(-4)}^2 + {3-(-1)}^2) = sqrt((6)^2 +(4)^2) = sqrt(36+16) = sqrt(52) = 2 sqrt(13) units`
`Thus , AB = CD = sqrt(13) units and BC = AD = 2 sqrt(13) units`
Also , `AC = sqrt({4-(-4)}^2+{0-(-1)}^2) = sqrt ((8)^2+(1)^2 ) = sqrt(64+1) = sqrt(65) units`
`BD = sqrt({2-(-2)}^2 +{3-(-4)}^2) = sqrt((4)^2 +(7)^2) = sqrt(16+49) = sqrt(65) units`
Also, diagonal AC = diagonal BD
Hence, the given points form a rectanglr
संबंधित प्रश्न
The three vertices of a parallelogram are (3, 4) (3, 8) and (9, 8). Find the fourth vertex.
Find the coordinates of the circumcentre of the triangle whose vertices are (3, 0), (-1, -6) and (4, -1). Also, find its circumradius.
In the seating arrangement of desks in a classroom three students Rohini, Sandhya and Bina are seated at A(3, 1), B(6, 4), and C(8, 6). Do you think they are seated in a line?
Determine the ratio in which the straight line x - y - 2 = 0 divides the line segment
joining (3, -1) and (8, 9).
Determine the ratio in which the point (-6, a) divides the join of A (-3, 1) and B (-8, 9). Also, find the value of a.
Point A lies on the line segment PQ joining P(6, -6) and Q(-4, -1) in such a way that `(PA)/( PQ)=2/5` . If that point A also lies on the line 3x + k( y + 1 ) = 0, find the value of k.
In what ratio does the line x - y - 2 = 0 divide the line segment joining the points A (3, 1) and B (8, 9)?
The base QR of a n equilateral triangle PQR lies on x-axis. The coordinates of the point Q are (-4, 0) and origin is the midpoint of the base. Find the coordinates of the points P and R.
The midpoint P of the line segment joining points A(-10, 4) and B(-2, 0) lies on the line segment joining the points C(-9, -4) and D(-4, y). Find the ratio in which P divides CD. Also, find the value of y.
Find the area of quadrilateral ABCD whose vertices are A(-5, 7), B(-4, -5) C(-1,-6) and D(4,5)
Prove that the diagonals of a rectangle ABCD with vertices A(2,-1), B(5,-1) C(5,6) and D(2,6) are equal and bisect each other
Find the coordinates of the circumcentre of a triangle whose vertices are (–3, 1), (0, –2) and (1, 3).
If A(−3, 5), B(−2, −7), C(1, −8) and D(6, 3) are the vertices of a quadrilateral ABCD, find its area.
If the points A(−1, −4), B(b, c) and C(5, −1) are collinear and 2b + c = 4, find the values of b and c.
Find the area of triangle with vertices ( a, b+c) , (b, c+a) and (c, a+b).
If the centroid of the triangle formed by (7, x) (y, −6) and (9, 10) is at (6, 3), then (x, y) =
If segment AB is parallel Y-axis and coordinates of A are (1, 3), then the coordinates of B are ______
What are the coordinates of origin?
Point P(– 4, 2) lies on the line segment joining the points A(– 4, 6) and B(– 4, – 6).
Find the coordinates of the point which lies on x and y axes both.