मराठी

Prove that the Points A(-4,-1), B(-2, 4), C(4, 0) and D(2, 3) Are the Vertices of a Rectangle. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the points A(-4,-1), B(-2, 4), C(4, 0) and D(2, 3) are the vertices of a rectangle.

उत्तर १

Let A (-4,-1); B (-2,-4); C (4, 0) and D (2, 3) be the vertices of a quadrilateral. We have to prove that the quadrilateral ABCD is a rectangle.

So we should find the lengths of opposite sides of quadrilateral ABCD.

`AB = sqrt((-2+4)^2) + (-4 + 1)^2)`

`= sqrt(4 + 9)`

`= sqrt13`

`CD = sqrt((4 - 2)^2 + (0 - 3)^2)`

`= sqrt(4 +9)`

`= sqrt13`

Opposite sides are equal. So now we will check the lengths of the diagonals.

`AC = sqrt((4 + 4)^2 + (0 + 1)^2)`

`= sqrt(64 + 1)`

`= sqrt(65)`

`BD = sqrt((2 + 2)^2 + (3 + 4)^2)`

`= sqrt(16 + 49)`

`= sqrt65`

Opposite sides are equal as well as the diagonals are equal. Hence ABCD is a rectangle.

shaalaa.com

उत्तर २

The given points are  A (-4,-1); B (-2,-4); C (4, 0) and D (2, 3) .

`AB = sqrt({-2-(-4)}^2 + { -4-(-1)}^2) = sqrt ((2)^2+(-3)^2) = sqrt(4+9) = sqrt(13) ` units

` BC = sqrt({ 4-(-2)}^2+{0-(-4)}^2) = sqrt((6)^2 +(4)^2) = sqrt(36+16) = sqrt(52) = 2 sqrt(13)  units`

`CD = sqrt((2-4)^2 +(3-0)^2) = sqrt((-2)^2 +(3)^2) = sqrt(4+9) = sqrt(13)  units`

`AD = sqrt({2-(-4)}^2 + {3-(-1)}^2) = sqrt((6)^2 +(4)^2) = sqrt(36+16) = sqrt(52) = 2 sqrt(13) units`

`Thus , AB = CD = sqrt(13)   units and BC = AD = 2 sqrt(13)   units`

Also , `AC = sqrt({4-(-4)}^2+{0-(-1)}^2) = sqrt ((8)^2+(1)^2 ) = sqrt(64+1) = sqrt(65)  units`

`BD = sqrt({2-(-2)}^2 +{3-(-4)}^2) = sqrt((4)^2 +(7)^2) = sqrt(16+49) = sqrt(65)  units`

Also, diagonal AC = diagonal BD

Hence, the given points form a rectanglr

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.3 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.3 | Q 17 | पृष्ठ २९
आर एस अग्रवाल Mathematics [English] Class 10
पाठ 16 Coordinate Geomentry
Exercises 1 | Q 32.1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The three vertices of a parallelogram are (3, 4) (3, 8) and (9, 8). Find the fourth vertex.


Find the coordinates of the circumcentre of the triangle whose vertices are (3, 0), (-1, -6) and (4, -1). Also, find its circumradius.


In the seating arrangement of desks in a classroom three students Rohini, Sandhya and Bina are seated at A(3, 1), B(6, 4), and C(8, 6). Do you think they are seated in a line?


Determine the ratio in which the straight line x - y - 2 = 0 divides the line segment
joining (3, -1) and (8, 9).


Determine the ratio in which the point (-6, a) divides the join of A (-3, 1)  and B (-8, 9). Also, find the value of a.


Point A lies on the line segment PQ joining P(6, -6) and Q(-4, -1) in such a way that `(PA)/( PQ)=2/5` . If that point A also lies on the line 3x + k( y + 1 ) = 0, find the value of k.


In what ratio does the line x - y - 2 = 0 divide the line segment joining the points A (3, 1) and B (8, 9)? 


The base QR of a n equilateral triangle PQR lies on x-axis. The coordinates of the point Q are (-4, 0) and origin is the midpoint of the base. Find the coordinates of the points P and R.


The midpoint P of the line segment joining points A(-10, 4) and B(-2, 0) lies on the line segment joining the points C(-9, -4) and D(-4, y). Find the ratio in which P divides CD. Also, find the value of y.


Find the area of quadrilateral ABCD whose vertices are A(-5, 7), B(-4, -5) C(-1,-6) and D(4,5)


Prove that the diagonals of a rectangle ABCD with vertices A(2,-1), B(5,-1) C(5,6) and D(2,6) are equal and bisect each other


Find the coordinates of the circumcentre of a triangle whose vertices are (–3, 1), (0, –2) and (1, 3).


If A(−3, 5), B(−2, −7), C(1, −8) and D(6, 3) are the vertices of a quadrilateral ABCD, find its area.


If the points A(−1, −4), B(bc) and C(5, −1) are collinear and 2b + c = 4, find the values of b and c.


Find the area of triangle with vertices ( ab+c) , (bc+a) and (ca+b).

 

If the centroid of the triangle formed by (7, x) (y, −6) and (9, 10) is at (6, 3), then (x, y) =


If segment AB is parallel Y-axis and coordinates of A are (1, 3), then the coordinates of B are ______


What are the coordinates of origin?


Point P(– 4, 2) lies on the line segment joining the points A(– 4, 6) and B(– 4, – 6).


Find the coordinates of the point which lies on x and y axes both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×