Advertisements
Advertisements
प्रश्न
Find the coordinates of the circumcentre of the triangle whose vertices are (3, 0), (-1, -6) and (4, -1). Also, find its circumradius.
उत्तर
The distance d between two points `(x_1,y_1)` and `(x_2, y_2)`is given by the formula
`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`
The circumcentre of a triangle is the point which is equidistant from each of the three vertices of the triangle.
Here the three vertices of the triangle are given to be A(3,0), B(−1,−6) and C(4,−1)
Let the circumcentre of the triangle be represented by the point R(x, y).
So we have AR = BR = CR
`AR = sqrt((3 - x)^2 + (-y)^2)`
`BR = sqrt((-1-x)^2 + (-6 -y)^2)`
`CR = sqrt((4 -x)^2 + (-1-y)^2)`
Equating the first pair of these equations we have,
AR= BR
`sqrt((3 - x)^2 + (-y)^2) = sqrt((-1-x)^2 +(-6-y)^2)`
Squaring on both sides of the equation we have,
`sqrt((3 - x)^2 + (-y)^2) = sqrt((-1-x)^2 + (-6-y))`
`9 + x^2 - 6x + y^2 = 1 + x^2 + 2x + 36 + y^2 + 12y`
8x + 12y = -28
2x + 3y = -7
Equating another pair of the equations we have,
AR = CR
`sqrt((3 - x)^2 + (-y)^2) = sqrt((4 - x)^2 + (-1 - y)^2)`
Squaring on both sides of the equation we have,
`(3 - x)^2 + (-y)^2 = (4 - x)^2 + (-1 - y)^2`
`9 + x^2 - 6x + y^2 = 16 + x^2 - 8x + 1 + y^2 + 2y`
2x - 2y = 8
x - y = 4
Now we have two equations for ‘x’ and ‘y’, which are
2x + 3y = -7
x - y = 4
From the second equation we have y = x - 4. Substituting this value of ‘y’ in the first equation we have,
2x + 3(x - 4) = -7
2x + 3x - 12 = -7
5x = 5
x= 1
Therefore the value of ‘y’ is,
y = x - 4
= 1 - 4
y = -3
Hence the co-ordinates of the circumcentre of the triangle with the given vertices are (1, -3).
The length of the circumradius can be found out substituting the values of ‘x’ and ‘y’ in ‘AR’
`AR = sqrt((3 - x)^2 + (-y)^2)`
`= sqrt((3 -1)^2 + (3)^2)`
`= sqrt((2)^2 +(3)^2)`
`= sqrt(4 + 9)`
`AR = sqrt13`
Thus the circumradius of the given triangle is `sqrt13` units
APPEARS IN
संबंधित प्रश्न
The base PQ of two equilateral triangles PQR and PQR' with side 2a lies along y-axis such that the mid-point of PQ is at the origin. Find the coordinates of the vertices R and R' of the triangles.
In Fig. 14.36, a right triangle BOA is given C is the mid-point of the hypotenuse AB. Show that it is equidistant from the vertices O, A and B.
We have a right angled triangle,`triangle BOA` right angled at O. Co-ordinates are B (0,2b); A (2a, 0) and C (0, 0).
Find a point on the x-axis which is equidistant from the points (7, 6) and (−3, 4).
Prove that the points (0, 0), (5, 5) and (-5, 5) are the vertices of a right isosceles triangle.
Name the quadrilateral formed, if any, by the following points, and given reasons for your answers:
A(-1,-2) B(1, 0), C (-1, 2), D(-3, 0)
Find the coordinates of the point where the diagonals of the parallelogram formed by joining the points (-2, -1), (1, 0), (4, 3) and(1, 2) meet
Determine the ratio in which the straight line x - y - 2 = 0 divides the line segment
joining (3, -1) and (8, 9).
Prove that the points (4, 5) (7, 6), (6, 3) (3, 2) are the vertices of a parallelogram. Is it a rectangle.
If the point C ( - 2,3) is equidistant form the points A (3, -1) and Bx (x ,8) , find the value of x. Also, find the distance between BC
In what ratio is the line segment joining the points A(-2, -3) and B(3,7) divided by the yaxis? Also, find the coordinates of the point of division.
If the point P(x, 3) is equidistant from the point A(7, −1) and B(6, 8), then find the value of x and find the distance AP.
Write the coordinates of a point on X-axis which is equidistant from the points (−3, 4) and (2, 5).
Find the coordinates of the point which is equidistant from the three vertices A (\[2x, 0) O (0, 0) \text{ and } B(0, 2y) of ∆\] AOB .
If P is a point on x-axis such that its distance from the origin is 3 units, then the coordinates of a point Q on OY such that OP = OQ, are
If the line segment joining the points (3, −4), and (1, 2) is trisected at points P (a, −2) and Q \[\left( \frac{5}{3}, b \right)\] , Then,
The coordinates of the point P dividing the line segment joining the points A (1, 3) and B(4, 6) in the ratio 2 : 1 are
The points (–5, 2) and (2, –5) lie in the ______.
The point whose ordinate is 4 and which lies on y-axis is ______.
Find the coordinates of the point which lies on x and y axes both.
Co-ordinates of origin are ______.