मराठी

In Fig. 14.36, a Right Triangle Boa is Given C is the Mid-point of the Hypotenuse Ab. Show that It is Equidistant from the Vertices O, a and B. - Mathematics

Advertisements
Advertisements

प्रश्न

In Fig. 14.36, a right triangle BOA is given C is the mid-point of the hypotenuse AB. Show that it is equidistant from the vertices O, A  and B. 

    

We have a right angled triangle,`triangle BOA`  right angled at O. Co-ordinates are B (0,2b); A (2a0) and C (0, 0).

 

 

 

उत्तर

We have to prove that mid-point C of hypotenuse AB is equidistant from the vertices.

In general to find the mid-pointP(x,y)  of two points`A(x_1,y_1)`and `B (x_2,y_2)` we use section formula as, 

`p(x,y)=((x_1+x_2)/2,(y_1+y_2)/2)` 

So co-rdinates of C is , 

C (a,b) 

In general, the distance between` A(x_1,y_2)` and `B(x_2,y_2)`is given by, 

`AB=sqrt((x_2-x_1)^2+(y_2-y_1)^2)` 

So, 

`CO=sqrt((a-0)^2+(b0o)^2)` 

`=sqrt(a^2+b^2)`

`CB =sqrt((a-0)^2+(b-2b)^2)` 

`sqrt(a^2+b^2)` 

`CA=sqrt((a-2a)^2+(b-0)^2)

`sqrt(a^2+b^2` 

Hence, mid-point  C of hypotenuse AB is equidistant from the vertices.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.4 | Q 10 | पृष्ठ ३७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that the points (3, 0), (4, 5), (-1, 4) and (-2, -1), taken in order, form a rhombus.
Also, find its area.


Find the coordinates of the point which divides the line segment joining (−1,3) and (4, −7) internally in the ratio 3 : 4


Show that the following points are the vertices of a square:

A (0,-2), B(3,1), C(0,4) and D(-3,1)


The line segment joining the points A(3,−4) and B(1,2) is trisected at the points P(p,−2) and Q `(5/3,q)`. Find the values of p and q.


If (2, p) is the midpoint of the line segment joining the points A(6, -5) and B(-2,11) find the value of p.


Find the ratio in which the pint (-3, k) divide the join of A(-5, -4) and B(-2, 3),Also, find the value of k.


In what ratio is the line segment joining A(2, -3) and B(5, 6) divide by the x-axis? Also, find the coordinates of the pint of division.


Find the ratio in which the point (-1, y) lying on the line segment joining points A(-3, 10) and (6, -8) divides it. Also, find the value of y.


The midpoint P of the line segment joining points A(-10, 4) and B(-2, 0) lies on the line segment joining the points C(-9, -4) and D(-4, y). Find the ratio in which P divides CD. Also, find the value of y.


Find the coordinates of the circumcentre of a triangle whose vertices are (–3, 1), (0, –2) and (1, 3).


Show that A(-4, -7), B(-1, 2), C(8, 5) and D(5, -4) are the vertices of a
rhombus ABCD.


If the points A(1, –2), B(2, 3) C(a, 2) and D(– 4, –3) form a parallelogram, find the value of a and height of the parallelogram taking AB as base.  


Write the ratio in which the line segment joining points (2, 3) and (3, −2) is divided by X axis.


Two vertices of a triangle have coordinates (−8, 7) and (9, 4) . If the centroid of the triangle is at the origin, what are the coordinates of the third vertex?


The distance between the points (a cos 25°, 0) and (0, a cos 65°) is


If points A (5, pB (1, 5), C (2, 1) and D (6, 2) form a square ABCD, then p =


The coordinates of the fourth vertex of the rectangle formed by the points (0, 0), (2, 0), (0, 3) are


The point at which the two coordinate axes meet is called the ______.


If the vertices of a parallelogram PQRS taken in order are P(3, 4), Q(–2, 3) and R(–3, –2), then the coordinates of its fourth vertex S are ______.


The distance of the point (–4, 3) from y-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×